下面是范文网小编整理的新人教版八年级数学下册二次根式教案整理15篇(人教版初二数学下册二次根式教案),供大家参考。
新人教版八年级数学下册二次根式教案整理1
新的课程标准,倡导把课堂变为学生自主、合作、探究的场所,呼唤学生主体性的发展。于是课堂上,我转变角色,变数学知识的传授者为数学活动的组织者、指导者、参与者和研究者。教学活动中,我首先明确这节课的学习目标,然后学生在问题的基础之上逐步地得出这节课的重点内容。这样让学生感觉坡度不大,掌握起来比较容易。从而充分利用公式来做题。
我在设计练习题时,一是遵循学生的学习规律,从易到难。二是从易错点出发。并且我进行了分层练习,分为A、B、C三组。最后我附加了小测验。测验题紧扣本节课的知识内容,从易到难。数学来自于生活,我在最后加了一个实际题目。
从整堂课来看,效果比较好,学生从未知到已知,并且进行了消化。整堂课始终把学生摆在第一位,让他们主动去学习。真正把课堂交给学生,让他们变成学习的主体。层层的问题给学生提供自主探索的机会,让学生的学习过程成为一个再探索、再发现的过程。在这种学习活动中,学生的创新意识和主动探求知识的兴趣得到了培养,同时使所有学生都能在数学学习中获得发现的'乐趣、成功的愉悦,树立了自信心,增强了克服困难的勇气和毅力。
新人教版八年级数学下册二次根式教案整理2
在二次根式的加减运算时,首先需搞清楚什么是同类二次根式,同类二次根式的判断,关键是能熟练准确地化二次根式为最简二次根式,二次根式的加减,首先要化简二次根式,化简之后,就类似整式的加减运算了.整式的加减实质就是去括号和合并同类项.二次根式的加减也是如此.合并同类二次根式与合并同类项类似.在教学中应注意二次根式的加减运算与整式加减运算的类比。
判断两个或多个二次根式是不是同类二次根式,是将它们化简成最简二次根式,再看被开方数是不相同,被开方数相同就是同类二次工,如果被开方数不相同就不是同类二次根式,这与根号的因数或因式无关,合并同类二次根式后,根号前的系数不能是带分数,指导学生根据问题去自学课本。通过自学课本解决问题,从而自己独立学习,结合小组合作学习掌握二次根式的加减运算。
通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。
新人教版八年级数学下册二次根式教案整理3
今天通过学习二次根式的乘除法,使我感觉到类比的数学思想在数学中的重要性。
前面我们已经学习了最简二次根式、合并同类二次根式以及二次根式的加减法,今天我们进一步学习二次根式的乘除法。首先,情景引入:通过将大正方形中已知两小正方形的面积,求剩下的长方形面积的问题引入二次根式的乘法及乘法法则;其次,通过例题1利用总结出二次根式的乘除法则进行计算同时注意结果要化简;再次,利用乘除法关系引入二次根式的除法法则并用之计算。
总而言之,在二次根式的乘除法运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣。特别是本节课的类比的数学思想,类比多项式的有关运算,如:单项式与多项式、多项式与多项式乘法的运算;平方差与完全平方公式的应用,加法及乘法的运算律,这些法则在二次根式的乘除法运算中仍然使用。通过类比,学生便很容易能接受本节内容。
本节课在学生学习过程中对二次根式的乘除法法则理解上问题不大,但常常忘记运算结果需要化简,结果不能化成最简二次根式,此外被开方数是多项式的乘除法运算上容易出错,尽管课堂上反复练习但还是有人出错。因此,这部分内容只能多做多发现问题,让学生多比较,从而认识到自己的错误所在。
新人教版八年级数学下册二次根式教案整理4
在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,教学内容是着重研究二次根式。在本章教学中,存在以下问题:
1、在教学过程中。
仍然存在过高估计学生的学习能力,每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、在二次根式的化简中。
新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在学生的学习方面。
也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
基于上面的诸多因素,我班学生在学习还不够理想,在本章单元测验中,体现高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,提高教学实效。《二次根式单元教学反思》/p><
新人教版八年级数学下册二次根式教案整理5
本章的教学目标是经历二次根式的概念的发生过程,了解二次根式的概念,以及二次根式的性质和运算。在概念的教学上采用了问题导入法比较顺利。但对概念有一点疑惑,形如根号a(a>=o)的式子,那根号前面的系数要不是1呢,难道就不是二次根式了吗?本章的难点在利用性质化简。往往不顾条件就往下做,过后才会醒悟,这是一棘手的问题。对于同类二次根式的概念的教学必须强调两点1要最简2被开方数相同。尤其在应用时学生会忽略第一点。
运算方面对加减法主要还是要熟练化简,对一些常用的数进行分解。其次同类要合并,问题不是很大。而在乘除法的运算上,方法用的不当会变的很麻烦。主要要学会细心观察,是先乘除后化简来的比较简单。
新人教版八年级数学下册二次根式教案整理6
1.下列图像中可能是反比例函数y= 的图像的共有 ( )
2.在同一直角坐标系下,直线y=x+1与双曲线y= 的交点的个数为 ( )
A.0个 B.1个 C.2个 D.不能确定
3.反比例函数y=- 的图像是_______,该函数图像在第_______象限.
4.已知反比例函数y= 的图像经过点(1,-2),则这个函数的表达式是_______.
5.已知双曲线y= 经过点(-1,2),那么k的值等于_______.
6.在平面直角坐标系中,分别画出下列函数的图像:
(1)y= (2)y=-
7.反比例函数y= 的图像经过点(-2,3),则k的值为 ( )
A.6 B.-6 C. D.-
8.反比例函数y= 的图像大致是 ( )
9.如图,点P(-3,2)是反比例函数y= (k≠0)的图像上
一点,则反比例函数的解析式为 ( )
A.y=- B.y=-
C.y=- D.y=-
10.函数y=- 的图像上所有点的横坐标与纵坐标的乘积是_______.
11.已知点P为函数y= 图像上一点,且P到原点的距离为2,则符合条件的点P有__个
12.分别在坐标系中画出下列函数的图像:
(1)y= (2)y=-
13.反比例函数y= 的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?
14.设某一直角三角形的面积为18 cm2,两条直角边的长分别为x(cm),y(cm).
(1)写出y(cm)与x( cm)的函数关系式;
(2)画出该函数的图像;
(3)根据图像,求解:①当x=4 cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?
参考答案
1.B 2.C 3.双曲线 二、四 4.y=- 5.-3 6.略
7.C 8.C 9.D 10.-5 11.4 12.略 13.y=- 图像略 分布在二、四象限 14.(1)y= (2)略 (3)①y=9 ② x=6
新人教版八年级数学下册二次根式教案整理7
二次根式是代数式的一部分,其运算是有关运算中不可或缺的环节,是后续教学中的基础之一。因此,学好本章内容具有重要意义。而在教学中发现,有很多学生(甚至教师)对这一部分内容相当含糊,特别是积的算术平方根、商的算术平方根公式以及二次根式的乘除法公式的有机应用,更造成了理解上的混乱,运算上的失误。要解决这个问题,就必须明确二次根式的化简、运算目的。通过教学反思,我认为二次根式的教与学必须围绕“小”、“少”、“分母无根号”三步诀。
所谓“小”,是指被开方数化简到最简(即化简成不能再开平方的整数)为止。为此,可以用二次根式的四个性质来实现这个目的:①2=a;②=|a|;③=;④=。
所谓“少”,是指结果中尽量少含根号。要达到这个要求,可以用二次根式的乘法、除法公式来解决:;。在教材中P7例1计算、P9例4等。
所谓“分母无根号”,是指分母中不含有根号。众所周知,开不尽方的数是无理数,要除以一个无限不循环的小数,是很困难的,所以要转化为有理数来解决。一般情况下,利用分式的基本性质,分子、分母同时乘以分母的有理化因式即可。
新人教版八年级数学下册二次根式教案整理8
本节课的重点二次根式的两个性质,并会用性质化简一些二次根式。 针对教学目标,本堂课设计了四个主要的教学环节:
第一环节、师生合作,通过复习算术平方根的概念,运用归纳、猜想的思想方法,得出二次根式的第一条性质,随后进行了相关的练习,加强了学生对概念的理解。
第二环节、小组合作学习,运用类比、归纳、猜想的思想方法,得出二次根式的第二条性质。之后,设计了一个“我来考考你的环节”,让学生自己根据性质2,仿照书本课内练习1,给同伴出题,这一简单的举措,激发了学生的学习兴趣,调动了课堂气氛。
第三环节、学生自主完成例1,然后在小组内探讨存在的问题并解决问题。对于例2,在学习过程中,学生对于a是非负数的二次根式没有困难,但是对于根号里面a是负数的二次根式,学习起来还是有困难的,所以在这里应该举例示范,让学生讨论如何解答。这里不要快,要一步步来,等学生都明白其中的道理后,再进行相应的练习,如果出现问题,再进行点评,这样下来,学生就可以掌握二次根式的化简了,但是由于时间关系,我紧紧叫了一个学生上黑板板书,没有做到一题多解,今后多在这方面努力。
第四环节、运用性质化简含有字母的二次根式。这一环节,加深了学生对二次根式两个性质的理解。
课后作业的布置,由于要用到开方,所以,我让学生背会1-30的平方分别等于多少,这样在以后的学习中会用得到,可以提高计算速度。
新人教版八年级数学下册二次根式教案整理9
一、数学教学过程应当是一个生动活泼的。主动的和富有个性的过程,而不能再是单一的。枯燥的,以被动听讲和练习为主的方式,它应该是一个充满生命力的过程。
1.本节课是在学生已有的知识基础上,教师(或学生)提出适当的数学问题,通过师生之间或生生之间互相讨论。学习。探究,在问题解决过程中活化知识。启动思维,运用有关知识进行解题。了解二次根式的概念。
2.本节课始终以学生为中心,教师作为教学活动的组织者,引导者,合作者,体会用类比的思想研究二次根式,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂,体现“动手实践,自主探索。合作交流是学生学习数学的重要方式”这一思想,教学中为学生创造大量的操作。思考和交流的机会,关注学生思考问题的过程,鼓励学生在探索规律的过程中从多个角度进行考虑,培养学生主动探索,敢于实践,善于发现的科学精神以及合作精神,树立创新意识,品尝成功的喜悦,激发学生应用数学的热情。
3.在二次根式概念教学中,须紧紧扣住其三个基本特征,首先看它是否含有根号;其次看根指数是不是2;最后看被开方数是不是非负数。若三个答案都是肯定的,那么这个式子是二次根式。不满足三个条件中的任何一个就不是。
新人教版八年级数学下册二次根式教案整理10
本课先通过对实际问题的解决来引入二次根式的加减运算,此问题贴近学生生活,易激发学生的学习兴趣。采用分组讨论,由四人一组探索、发现、 解决问题,培养学生用数学方法解决实际问题的能力。.对法则的教学与整式的加减比较学习。再由学生自主讨论并总结二次根式的加减运算法则,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
学生在自主探究的过程中发现问题,解决问题,总结规律,加深对所学知识的理解。并向学生传递这样一个信息:二次根式的加减运算并不是孤立的全新的知识,可以将二次根式的加减进行比较学习。
使学生掌握被开方数相同的二次根式合并的方法,注意二次根式加减运算的联系与区别,避免一些常见错误,提高解题的准确程度。4、在二次根式的加减运算时,首先需搞清楚什么是同类二次根式,同类二次根式的判断,关键是能熟练准确地化二次根式为最简二次根式。再由学生自主讨论并总结二次根式的加减运算法则。
新人教版八年级数学下册二次根式教案整理11
八年级下册二次根式教学设计
教学目标:
掌握二次根式的概念;根据二次根式的概念掌握被开方数的取值范围。
教学重难点:
重点:二次根式的概念以及二次根式有意义的条件;
难点:根据要求求满足条件的字母的取值范围。
教学方法:先学后教,当堂训练
课时安排:一课时
教学过程:
1、知识回顾
1、算数平方根:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的`算数平方根。
2、正数的算数平方根是正数,0的算数平方根是0,负数没有平方根。
2、板书课题
3、出示学习目标
4、出示自学指导
自学教材2、3页,完成下列各题:
1、完成第二页思考题,找出二次根式的概念;
2、明确二次根式的特点;
3、式子有意义的条件;
4、完成《基础训练》课前预习。
5、检测
1、二次根式的概念
2、二次根式的特点
3、式子有意义的条件
4、课前预习讲解
6、练习
1、教材3页练习题;
2、习题16.1第1、7题;
3、《基础训练》课堂练习
7、小结
谈谈你对二次根式的认识......
8、作业
1、课本19页第一题
2、《基础训练》课后练习
3、思考学习拓展。
9、教学反思
1、因为学生已学习过算数平方根,所以对本节课知识能较快掌握;
2、本节课的关键在于掌握二次根式有意义的条件:被开方数大于等于0。同时结合之前所学知识能解答式子有意义时字母的取值范围。
3、学习之初应加强练习,把课堂还给学生,发挥学生主动型。
新人教版八年级数学下册二次根式教案整理12
“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
二次根式是在数的开方、实数的基础上进一步学习式的概念,是后继学习无理式以及解决物理方程的一个基础。但是二次根式与无理式是有区别的,前者主要在形式上是否是单一的带有二次根号,而后者则更注重对字母的运算。本章学习的核心概念是最贱二次根式及其化简,本章可以联系学生所学习的不等式、因式分解、解方程、代数式有意义的条件等知识点。学生学习的易错点还是由数到式的过度上,特别是二次根式的被开方式必须是非负数这一点,对于复杂的式子,学生很难把握,尤其是对符号的把握和理解,需要强化联系,讲解时注意和具体数的练习,把握其内在的道理,让学生明白是如何由易到难的转化。同时,本章也是规范学生正确书写书写符号以及提高学生运算能力的一章。
本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。然后指导学生根据问题导读单,去自学课本。通过自学课本再完成问题导读单,从而自己独立学习结合小组合作学习掌握二次根式的加减运算。通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。
总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。
新人教版八年级数学下册二次根式教案整理13
本节课的重点是被开方数相同的二次根式与合并被开方数相同的二次根式。
这节是最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定义,同类项的定义,合并同类项的法则,为这节课的学习作好铺垫。
同类二次根式:几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式。判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化简成最简二次根式,再观察它们的被开方数是否相同。
其次,同类二次根式必须同时具备两个条件:①根指数是2次;②被开方数相同,与根式的符号和根号外面的因式没有关系。
如何判断几个二次根式是不是同类二次根式,这些题可从课后练习中选取,但要注意书写规范。示范完成后做课后随堂练习与习题中的判断是不是同类二次根式的题目,做到及时巩固。
识别同类二次根式是二次根式的加减法的前提,所以,后面的同类二次根式的加减法就顺理成章了,也是先选一个题目进行板演示范,步骤一定要完整规范,然后就是学生进行模仿性练习,这样处理起来,学生没有困难,整节课节奏紧凑,效果显著。
学生在练习过程中存在的问题:①合并同类二次根式时,二次根式前面的字母因式不加括号,如,应该是;②二次根式的系数是带分数时,没写成假分数的形式,如,应该是。这些错误要注意引导纠正。
新人教版八年级数学下册二次根式教案整理14
本节课采用“自主互助,诱导探究”八环节教学模式。
这是我校经过一年多来的课堂教学实践而摸索出来的教学模式。“激趣导学”激发学生的求知的欲望,让学习进入学习的状态。“明确目标”让学生明确本节课学习的任务。“指导阅读”让学生带着问题去自学,体现的自主学习。在“自主互助”环节中,我让同组之间的学生相互讨论、互相学习,让学快生教学慢生,从而掌握二次根式的概念与性质。
通过“说一说”、“做一做”“反馈”学习在自学的掌握情况,把课堂还给学生。在“诱导探究”环节中,通过学生看教材,启发诱导学生,解决学生在自学中不能解决的问题,从而突破难点。“当堂训练”检测学生对所学知识的掌握情况。我设计的题目由浅入深,学生可以运用今天所学的知识解决问题。最后在“小结提升”中,让学生说说自己的收获,形成知识体系。
我觉得整堂课下来,不足之处在于花在“说一说”、“做一做”的时间多了些,导致后面的“当堂训练”中的点评少了些,时间上把握不是很到位。以后的教学中我会努力的去改进,让每一个学生都能真正投入到课堂中来。
新人教版八年级数学下册二次根式教案整理15
新人教版八年级数学下册《二次根式》教后反思
二次根式这节课的重点是了解二次根式的定义,会判断一个根式是不是二次根式,难点是二次根式成立的条件,和利用进行计算。
通过课前备学生,我了解到,学生接受起来并不是太顺利,所以,这一节课我进行了两块的内容,一是二次根式的定义,理解它并会用定义进行判断;二是二次根式成立的`条件,让学生掌握如何使二次根式有意义并会正确书写步骤。
接下来重点进行了确定二次根式中被开方数所含字母的取值范围这一知识点。
这里面要掌握一点,那就是若一个式子是二次根式,则它的被开方数一定是非负数,利用这一条件能确定二次根式中被开方数所含字母的取值范围。
特别的,含有分母的二次根式取值时易忽略分母不能为零这一条件。
由于取值范围的确定与不等式(组)有关,所以,在学习之前又进行了不等式的性质及解法进行了复习,因为前几天让学生复习过,且一直在温习,所以这一点学习并没有感觉到困难。
新人教版八年级数学下册二次根式教案整理15篇(人教版初二数学下册二次根式教案)相关文章: