六年级数学《圆柱体积》说课稿

时间:2022-10-11 19:56:00 说课稿

六年级数学《圆柱体积》说课稿

  作为一名为他人授业解惑的教育工作者,可能需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。优秀的说课稿都具备一些什么特点呢?以下是小编精心整理的六年级数学《圆柱体积》说课稿,欢迎阅读与收藏。

六年级数学《圆柱体积》说课稿1

  一、教学内容

  本节课是义务教育六年制小学数学课本第十二册第一单元第一小节第四课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

  本节课在教材中所处的地位和作用

  《圆柱和圆锥》这一单元是在学习了长方体和立方体的基础上进入了小学里学习立体图形的最后阶段,这个单元知识的综合性和对学生的要求都比较高,化归和类比是常用的思想方法要进行总结,长方形正方形以及圆的基础知识都是本单元的认知基础。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

  教材的编排特别注重让学生积极主动地实践研究,让学生在合作探究的过程中自主发现规律,先用想一想的思考,回忆圆面积公式推导过程,激活原先“化曲为直”的极限思想和“转化”的思想方法记忆储存,接着用较多的篇幅讲解切拼的过程,便于学生理解和感受转化的过程和极限思想,然后推导圆柱体积的计算公式,并抽象到字母公式。例题直接利用公式解决问题,试一试和练一练对方法进行了巩固,并有所变化,不同条件下求圆柱体积,完善认知结构。

  二、说教学目标

  根据新课程标准中对空间和图形的目标要求和对教材文本的分析理解,以及我对六年级学生的认知发展水品的认识,我从“知识能力”“过程方法”“情感态度”三个维度制订以下教学目标:

  1、经历并理解圆柱体积公式的推导过程,掌握圆柱的体积公式并能应用公式正确地解决实际问题。

  2、通过观察、猜测、操作、分析、比较、综合,建立初步的空间观念,并体会知识间相互“转化”的思想方法。

  3、让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感。

  圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程作为本节课的教学重点;而小学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,而本节课需要把圆柱体切割转化成长方体,我们却找不到某种材料做的圆柱体适合切割拼组,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学热点和分化点。

  本节课采用的教具和学具为:圆柱体切割组合学具,课件,各小组自备所需演示用具。

  三、说教法

  本课教学时最大特点是从学生已有的知识水平和认识规律出发,运用迁移,类比猜想、实践演示、自主推导,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以一几个特点:

  1、直观演示,操作发现

  教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生有丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

  2、巧设疑问,体现两“主”

  教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

  3、运用迁移,深化提高

  运用知识的迁移,培养学生利用旧知学习新能力,从而使学生主动学习,掌握知识,形成技能。

  四、说学法

  课堂教学中,不是光靠老师单纯地传授知识,而是主要靠在老师的指引下,让学生自已学,任何人都不能代替学生学习。所以要让教法为学法服务,在学法中体现教法。数学教学是数学活动的教学,我们倡导让学生在观察、比较、讨论、研究等一系列

  活动中协调多种感官参与活动,在活动中体验,在思考中创新,在小组合作学习中相互启发,取长补短,加深理解,培养学生的合作精神,使学生的学习能力得到发展。

  本节课的教学,让学生掌握一些基本的学习方法。

  1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。

  2、学会转化利用旧知成新知,解决新问题的能力。

  3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

  五、说教学程序

  对本节课的教学,我设计了以下几个环节。

  (一)复习讨论,为引入新知作准备

  1、什么叫做体积?怎样计算长方体的体积?

  板书:长方体的体积=底面积x高

  2、学习计算圆的面积时,是怎样把圆变换成已学过的图形、再计算面积的?

  当学生回答完毕后,用课件再现圆面积的“化曲为直”转换成近似长方形,然后进行推导的过程,让学生领悟到“把新的知识转换成旧的知识”这样的方法是很重要的方法。

  3、出示圆柱,出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(提示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。

  教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正成为学习的主人,使教学变得更加明确具体,可操作、可检测。同时也能激起全体学生参与达标意识,学生的主体地位就充分地显示出来了。

  (二)操作演示,探索内化新知

  1、设疑:要判断圆柱体积大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?

  2、演示操作,揭示新知。

  引导学生观察,沿着圆柱底面直径把圆柱切开,可以得到大小相同的16块。演示给学生看以后,再让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的体积与长方体的体积有什么关系?圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体体积计算公式的推导过程。并板书:

  圆柱的体积=底面积×高,引导学生用字母表示出来,最后让学生看书质疑。

  这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点、化解难点。

  关于难点的突破,我主要从以下几个方面着手:

  (1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

  (2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获取新知。

  (3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

  (4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

  3、运用。

  (1)、做一做:集体订正后,教师提问,这道题已知圆柱的底面积和高,求它的体积,如果不知道圆柱的底面积,那还必须知道什么条件才能求出它的体积?该怎样求?单位不统一怎么办?

  (2)出示例6、先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自已来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。

  在掌握了圆柱体积计算的方法之后,安排例6进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

  (四)巩固练习,检验目标

  2、完成练习三第1、2题。

  已知底面的周长(或半径或直径或底面积)和高,怎样求体积,通过不同条件求圆柱体积的练习,巩固新知,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

  3、变式练习:已知圆柱的体积、底面积、求圆柱的高。

  这道题的安排是对所学的内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

  4、动手实践:让学生测量自带的圆柱体。

  教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

  这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时教学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

  (五)总结全课,深化教学目标

  结合板书,引导学生说出本课所学内容,我是这样设计的:这节课我们是怎么学会圆柱的体积计算方法的?然后理一理化归思想的运用过程:平行四边形转化成长方形,三角形、梯形转化成平行四边形——圆转化成长方形——圆柱转化成长方体,使学生很好地理解化归思想在数学中的运用。

  然后归纳,通过本节课的学习,我们懂得了新知识的得来通过已学知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。

六年级数学《圆柱体积》说课稿2

  各位领导、老师:大家好!:

  今天,我说课的内容是《圆柱的体积》。我将从说教材、说学情、说教学流程三个方面进行说课。

  一、说教材。

  1.说内容。《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。

  2.教材简析。

  这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

  3、分析教材的编写思路、结构特点。

  为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:

  冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。通过例题1得以简单应用。

  人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。

  通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。不同的是为实现共同的教学目标引出问题的方式不同,冀教版更考虑学生年龄特点,注重学生学习兴趣的激发,让学生主动的去探究。但殊途同归,最终的学习目标是一致的。

  4.说教学目标

  基于对教材的理解和分析,我分别从知识、能力、情感与态度三方面拟定了本节课的教学目标:

  (1)知识目标:探索并掌握圆柱体积公式,能计算圆柱的体积。

  (2)能力目标:经历认识圆柱体积,探索圆柱体积计算公式的过程。

  (3)情感与态度目标:在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

  5、说教学重点和难点:

  结合学生的实际情况,我把教学重难点确定为:

  教学重点:掌握圆柱的体积计算公式,学会计算圆柱的体积。

  因为圆柱的体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力和空间想象能力,因此,圆柱的体积公式的推导过程是本节课的难点。

  二、说学情。

  六年级的学生已经习惯于进行小组合作探究式的学习,具有一定的探究与合作交流的能力。他们在学习几种多边形面积公式及圆的面积公式推导过程中已经能够熟练地运用“割补”的方法实现对图形的转化,在学习圆的周长有关知识及圆柱的侧面积时,他们也对“化曲为直”的思想有所体会和运用,为了实现上述教学目标,我精心进行教学设计,引领学生学会运用数学的思维方式去认识世界。

  三、说教学流程。

  合理安排教学流程是教学成功的关键。根据六年级学生的认知水平和特点,针对教学目标,把握重点,突破难点,我设计了以下几个步骤来完成教学。

  (一)口算:

  1、口头答出11至20各数的平方。

  2、口头答出3.14与一位数的积。

  这样设计的目的除了培养口算习惯,提高口算能力外,还为本节课计算圆柱的体积做了充分的准备(涉及到底面积计算)。

  (二 )创设情境 。

  由多媒体播放生日快乐歌曲,谈谈听到歌声想到了什么?记得爸爸、妈妈的生日吗?然后出示亮亮和爷爷同一天过生日的情境图,说一说发现了什么?想到了什么?目的是使学生了解到两个蛋糕都是圆柱形的,爷爷的生日蛋糕大,就是蛋糕的体积大。初步感受认识圆柱的体积,同时进行情感教育。

  然后拿出两个不易直观比较出体积大小的`茶叶桶,提出:你能说出哪个茶叶桶的体积大吗?用眼睛无法看出哪个茶叶筒的体积大,能不能想个办法比较两个茶叶桶体积的大小?从而使学生感受到学会计算圆柱体积的必要性。

  设计意图:这样通过亲切、自然的课前交流,使学感受到数学就在我们身边,给学生营造一种轻松愉快的学习氛围,激发起学生的探究欲望,从而引出新课。

  (三)、自学。

  首先提出怎样求圆柱的体积呢?联系以前学过的知识大胆猜一猜,想一想该怎样推导圆柱的体积公式呢?引导学生回忆圆的面积公式的推导过程并用课件展示,同时联想长方体的体积等于底面积乘高,学生可能会猜出把圆柱转化为学过的长方体来计算。

  猜得对不对呢?接着学生小组合作,动手实验,利用手中的圆柱体学具把一个圆柱体等分成16份拼成一个近似的长方体。引导学生观察思考:拼成的长方体和圆柱体有什么关系?你们发现了什么?小组讨论。给学生充分的时间和空间进行组内交流,得出结论。

  设计意图:通过学生的合理猜想,独立操作,仔细观察,集体讨论,交流总结,学会用转化的思想解决数学问题 。

  (四)、展示。

  首先每个小组派代表到前面展示学习成果,得出将圆柱体等分成16份可以拼成一个近似的长方体:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积,其他小组补充,质疑,从而归纳推导出圆柱的体积=底面积×高,用字母表示V=Sh。

  最后教师再用多媒体课件演示将圆柱体等分成16份再重新组合,看看可以得出一个什么样的立体图形?印证学生的结论。

  设计意图:让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破重点,化解难点。获得自主学习的快感。

  (五)自学并展示2。

  出示例1:一根圆柱形钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?先由学生读题自己独立完成,请一位学生到前面用展台展示,战士时重点提问学生,在解题时要注意什么?让学生自己来概括总结出:(1)单位要统一(2)求出的是体积,要用体积单位。

  设计意图:在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

  (六)、反馈。

  第一层次:练一练1题:直接给出底面积和高,独立计算各圆柱的体。目的是让学生进一步理解巩固圆柱的体积公式。

  第二层次:课件出示:口答求下列各圆柱体的体积(只列算式不计算)。

  (1)底面圆的半径是3厘米,高4厘米。

  (2)底面圆的直径是6分米,高是8分米。

  (3)底面圆的周长是12.56厘米,高是6厘米。

  第三层次:练习第2题。作业本上完成。方钢长50厘米,底面边长12厘米,锻造成底面为90平方厘米的圆柱体,求长?优等生再完成:用一个棱长是6分米的正方体,做一个最大的圆柱,圆柱的体积是多少?是两道变形题,通过反馈,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

  (七)总结全课,深化教学目标

  结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?

  目的在于让学生懂得新知识的得来是通过已学的知识来解决的,希望同学们多动脑,勤思考,生活中有许多问题需要利用所学知识来解决,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。

  板书设计: 圆柱的体积

  长方体的体积=(长×宽)×高

  ↓ ↓ ↓

  圆柱体的体积=底面积 × 高

  ↓ ↓

  V = S * h

  回顾反思整个教学过程,主要体现如下设计理念: 情境生活化:通过情境的创设,以求圆柱的体积为主线,在学生熟悉喜爱的生活情境中探索数学问题。 学习自主化:通过学生的动手操作,仔细观察,说一说,辨一辨,突破教学的重难点。为凸现这一学习过程,我给予学生更多的空间,学生在相互的碰撞和交流中发现圆柱的体积计算方法同时提高学生自主学习能力。在圆满的同时,我也觉得会有一些可能出现问题的地方:比如,在具体的运用和实践中一定要注意和圆柱的侧面积加以区别,这一点我在实际的教学中会多加以指导和训练。

  以上是我的说课过程,请各位领导,老师提出宝贵的意见 。谢谢!

六年级数学《圆柱体积》说课稿3

  教学内容:数学第十二册《圆柱的体积》

  教材分析:这部分内容包括圆柱体积的推导公式,在教学时,先回忆前面学习过的圆面积的转化,由此推想圆柱的体积能否转化成已经学习过的立体图形,求出它的体积。这部分内容重点是让学生理解圆柱体积公式的推导过程,通过教具演示和学生动手操作弄懂可以将圆柱转化成以前学习过的长方体(近似),再根据长方体的体积等于底面积乘得到圆柱的体积也应该是它的底面积乘高。

  教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。

  教学重点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。

  教学难点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。

  教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。

  教学设想:利用教具演示将圆柱进行切割拼凑的方法,让学生理解将圆柱转化成长方体,再依据长方体的体积计算方法推导出圆柱体积的计算方法。通过例题教学让学生进一步掌握圆柱体积的计算公式。

  教学过程:

  一、复习

  1、圆柱的侧面积怎么求?

  (圆柱的侧面积=底面周长×高。)

  2、长方体的体积怎样计算?

  学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

  板书:长方体的体积=底面积×高

  3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?

  二、导入新课

  教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?

  先让学生回忆,同桌的相互说说。

  然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的

  计算公式导出求圆面积的计算公式。

  教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

  让学生相互讨论,思考应怎样进行转化。

  指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。

  教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。

  板书课题:圆柱的体积

  三、新课

  1、圆柱体积计算公式的推导。

  教师出示一个圆柱,提问:这是不是一个圆柱?(是。)

  教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:

  “大家看,这是不是一圆?”(是。)

  “这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

  学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

  然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。

  教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?

  指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?”

  学生:长方形。

  教师:大家再看看整个圆柱,它又被拼成了什么形状?

  (有点接近长方体:)

  然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  教师:

  把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?

  引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

  教师:“而长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。

  教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?

  通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  板书:圆柱的体积=底面积×高

  教师:如果用V表示圆柱的体积,s表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=sH

  2、教学例4。

  出示例4。

  (1)教师指名学生分别回答下面的问题:

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?

  通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。

  (2)出示下面几种解答方案,让学生判断哪个是正确的?

  ①V=sH=50×2.1=105

  答:它的体积是105立方厘米。

  ②2.1米;210厘米

  V=sH=50×210=10500

  答:它的体积是10500立方厘米。

  ③50平方厘米=0,5平方米

  V=sH=0.5×2,1=1.05

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=sH=0.005×2.1=0.0105立方米

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。

  三、练习:

  1、做“做一做”的第1题。

  让学生独立做在练习本上,做完后集体订正。

  2、完成练习八的1、2题

  这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

六年级数学《圆柱体积》说课稿相关文章: