《多边形的内角和》公开课3篇 多边形内角和讲解

时间:2023-02-10 16:24:09 综合范文

  下面是范文网小编分享的《多边形的内角和》公开课3篇 多边形内角和讲解,供大家赏析。

《多边形的内角和》公开课3篇 多边形内角和讲解

《多边形的内角和》公开课1

  七年级数学下册《多边形的内角和》教案

  黑龙江省宾县宾西镇第二中学 杨显英

  设计理念:

  众所周知,数学课堂是以学生为中心的活动的课堂。通过动手实践、自主探索、合作交流的过程,达到知识的构建,能力的培养和意识的创新及情感的陶冶。这也是实现数学教育从“文本教育”回归到“人本教育”。为此,就《多边形的内角和》这一课题,我创造性的使用教材,从七个方面说一下我的教学设想。

  一教材分析:

  从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。

  二、学情分析:

  学生刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价,互相提问的积极性高。因此对于学习本节课内容的知识条件已经成熟。学生参加探索活动的热情已经具备。因此把这节课设计成一节探索活动课是必要的。

  三、教学目标的确定:

  新课程标准注重教学内容与现实生活的联系,注重学生经历观察、操作、推理、想像等探索过程。根据学生现有的知识水平,依据课程标准的要求,我确定了以下的教学目标。

  知识技能:掌握多边形的内角和公式

  数学思考:1、通过动手实践,自主探索,交流互 动,能够将多边形的问题转化为三角形的问题。从而深刻理解多边形的内角和,并会加以应用。

  2、通过活动,发展学生的合情推理能力,积累数学活动经验,在探索中学会交流自己的思想和方法。

  3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。

  解决问题:通过探索多边形的内角和公式,使学生尝试从不同的角度寻求解决问题的方法并能有效的解决问题。

  情感态度:让学生体验猜想得到证实的成功喜悦和成就感。在解题中感受数学就在我们身边。

  四、重难点的确立:

  既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。

《多边形的内角和》公开课2

  下面是初一数学说课稿《多边形的内角和》,仅供参考!

  《多边形的内角和》说课稿

  各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是<义务教育课程标准实验教科书>人教版,七年级下册第七章第三节的内容,分两课时,我今天说的是第二课时。对本节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计、教学评价设计六个方面进行阐述。

  一、背景分析

  1、 学习任务分析:

  《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习 镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的重点。

  2、学生情况分析:

  (1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。

  (2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。

  二、教学目标设计

  依据新课标的要求,我设计本节课的教学目标为以下四个方面:

  知识与技能:

  通过实验探索多边形内角和公式。

  数学思考:

  1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

  2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。

  解决问题:

  通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。

  情感态度:

  通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。

  三、课堂结构设计

  整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。

  四、教学媒体设计

  七年级学生思维活跃,容易接受新鲜事物,对直观的东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出重点突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。

  五、教学过程设计:

  1、创设情景:

  我设计了两个情景:

  情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。

  情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。也易于学生接受。

  2、建立模型:

  活动1:

  猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

  议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”——即通过添加辅助线的方法,把四边形分割成三角形。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。

  想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

  活动2:

  选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

  活动3:

  想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于以下不同形式的公式

  ①(n-2)•180° ②180°•n-360° ③180°•(n-1)- 180°

  通过任意多边形转化为三角形的过程,发展学生的空间想象能力。通过多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。在探索的过程中,再一次发展学生的推理能力和表达能力,在交流与合作的过程中,感受合作的重要性。

  3、解释与应用

  (1)智慧大比拼。通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。目的是检验学习效果,让学生经历运用知识解决问题的过程,发展学生的推理能力和语言表述能力,给学生获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。

  (2)情系奥运。引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

  4、拓展与探究

  小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

  5、反思与作业

  请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。

  分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。

  六、教学评价设计:

  学生学习水平评价:学生是否积极参与;是否独立思考;是否富于想象;是否敢于否定;是否兴趣浓厚;是否善于合作;能否主动探索;能否自由表达。

  学生学习效果评价:通过解释与应用,拓展与探究两个环节初步了解部分学生对本节知识的掌握情况,课后通过分层次作业,三天后进行的小测验,了解学生对本节内容的掌握情况,及时发现问题,对教学中的疏漏进行弥补。

  教师在教学过程中要及时根据学生回答,让学生之间进行互评,反馈,同时对于不同层次的学生和不同难度问题,教师要及时的给予反馈和评价。另外,通过学生评价自己和他人的表现,教师也要进行自我反思。

《多边形的内角和》公开课3

  7.3.2 《多边形的内角和》教案

  教 学 任 务 分 析

  教

  学

  目

  标 知识目标了解多边形的内角和与外角和公式,进一步了解转化的数学思想

  能力目标

  1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

  2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。

  3、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

  情感情感通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。

  重点探索多边形的内角和及外角和公式

  难点如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。

  教 学 流 程 安 排

  活 动 流 程活 动 内 容 和 目 的

  活动1 回顾三角形内角和,引入课题回顾三角形内角和知识,激发学生的学习兴趣,为后继问题解决作铺垫。

  活动2 探索四边形内角和鼓励学生寻找多种分割形式,深入领会转化的本质—将四边形转化为三角形问题来解决。

  活动3 探索五边形内角和,推导出任意多边形内角和公式通过类比得出方法,探索多边形内角和公式,体会数形间的联系,感受从特殊到一般的思考问题的方法。

  活动4 探索六边形及n边形外角和通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。

  活动5 多边形内角和与外角和公式的运用综合运用所学知识去解决问题。

  活动6 归纳总结,布置作业小结及课后探究习题梳理所学知识,达到巩固,发展提高的目的。

  教 学 过 程 设 计

  问 题 与 情 况师 生 行 为设 计 意 图

  活动1

  问题:你知道三角形的内角和是多少度吗?

  a

  b c

  三角形的内角和等于180°

  课题:多边形的内角和与外角和1、教师提问,学生思考作答。

  2、教师总结:三角形的内角和等于180°。

  3、引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和与外角和。回顾已学知识:三角形的内角和等于180°,为后继问题的解决作铺垫。

  利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去。

  活动2

  问题:你知道任意一个四边形的内角和是多少吗?

  学生展示探究成果

  a

  d

  b c

  分成2个三角形

  180°×2=360°

  d

  a

  o

  b c

  分割成4个三角形

  180°×4-360°=360°

  a

  d

  b p c

  分割成3个三角形

  180°×3-180°=360°1、引导学生猜想:四边形的内角和等于360°。

  2、学生分小组交流与探究,进一步来论证自己的猜想。

  3、由各小组成员汇报探索的思路与方法,讲明理由。

  4、教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。

  5、教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。教师可点拨学生从正方形、长方形这两个特殊的多边形的内角和,进而猜测出四边形的内角和等于360°。

  “解放学生的手,解放学生的大脑”,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

  鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。

  活动3

  问题1:你知道五边形的内角和是多少度吗?

  a e

  b

  d

  c

  a e

  o

  b d

  c

  a e

  b

  d

  p

  c

  问题2:你知道n边形的内角和吗?

  (n-2)·180°

  180°n-360°

  180°(n-1)-180°

  板书:

  多边形内角和公式:(n-2)·180°

  例:求15边形内角和的度数1、教师提出问题,学生思考后分组活动。

  2、教师深入小组,参与小组活动,及时了解学生探索的情况。

  3、让学生归纳借助辅助线将五边形分割成三角形的不同分法。

  4、探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。

  5、根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。

  6、通过计算让学生巩固并掌握n边形内角和公式。通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进一步体现新课标“以人为本”的思想,再一次发展学生的平理能力和语言表达能力。

  通过四边形、五边形特殊,多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。

  活动4

  问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点a,他的身体旋转了多少度?

  例:六边形外角和等于多少度?

  e 4 d

  5

  f 3 c

  6

  2

  a 1 b

  问题2:n边形外角和等于多少度?

  n边形外角和等于360°1、学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360°。

  2、教师引导学生利用多边形的内角和公式,进一步论证六边形外角和等于360°。即:六个平角减去六边形内角和等于六边形外角和360°

  3、进行类比推理并小结:n边形外角和等于n个平角减去n边形内角和,与边数无关。

  180°n-(n-2)·180°=360°经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。

  通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。

  活动5

  问题:你能运用多边形内角和与外角和公式解决问题吗?

  (1)教科书p88 例1

  (2)求下列图中x值

  150 °2x°

  120 °

  x°

  80 °

  120 °

  75 ° x°

  (3)一个多边形的内角和与外角和相等,它是几边形?

  探究题:小明有一个设想:XX年奥运会在北京召开,他设计一个内角和是°的多边形图案多有意义,小明的想法能实现吗?1、学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。

  2、教师从学生的回答中,了解学生有条理表达自己的思考过程。

  3、引导学生利用多边形的内角和公式解释小明的设想能否实现,进一步让学生感受到数学的趣味性,以及与实际生活间的密切联系。学生自主探索巩固知识和获得技能,掌握基本的数学思想。

  教师及时了解学生的学习效果,让学生经历用知识解决问题的过程。

  同时激发学生的学习和积极性,建立学好数学的自信心。学生巩固、发展、提高。

  活动6

  问题:谈谈本节课你有哪些收获?

  作业:课本p90.2 p90.61、学生反思学习和解决问题的过程。

  2、鼓励学生大胆表达,并对学生的进步给予肯定,树立学生学好数学的自信心。通过回顾和反思,让学生看到自己的进步,激励学生,使学生自己在今后的学习中会不断进步,提高学生的学习热情。

《多边形的内角和》公开课3篇 多边形内角和讲解相关文章:

多边形的内角和教学设计(多边形的内角和教案人教版)

多边形的内角和教案(多边形的内角和教案四年级)