下面是范文网小编整理的解比例100道带答案共8篇(20道解比例题带答案),供大家阅读。
解比例100道带答案共1
30道解应用题及答案
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
思路分析:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
参考答案:
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
所以一张桌子320元,一把椅子32元。
2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
思路分析:
可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
参考答案:
解:45+5×3=45+15=60(千克)
所以3箱梨重60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
思路分析:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
参考答案:
解:4×2÷4=8÷4=2(千米)
所以甲每小时比乙快2千米。
4.小李和张强付同样多的钱买了同一种铅笔,小李要了13支,张强要了7支,小李又给张强0.6元钱。每支铅笔多少钱?
思路分析:
根据两人付同样多的钱买同一种铅笔和小李要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而小李要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
参考答案:
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
所以每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)?
思路分析:
根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
参考答案:
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
所以两地相距255千米。
6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
思路分析:
第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
参考答案:
解:第一组追赶第二组的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
所以第一组2.5小时能追上第二小组。
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
思路分析:
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
参考答案:
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
所以甲仓存粮51吨,乙仓存粮14吨。
8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
思路分析:
根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
参考答案:
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
所以两队每天修90米。
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
思路分析:
已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
参考答案:
解:每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:
25+30=55(元)
所以每张桌子55元,每把椅子25元。
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
思路分析:
根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
参考答案:
解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
所以甲乙两地相距560千米。
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
思路分析:
根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
参考答案:
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
所以损坏了5箱。
12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
思路分析:
因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
参考答案:
解:4×2÷(12-4)=4×2÷8 =1(时)
所以第二中队1小时能追上第一中队。
13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
思路分析:
由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
参考答案:
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
所以这堆煤有6000千克。
14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
思路分析:
小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
参考答案:
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
所以每支铅笔0.2元。
15.根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的`人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
思路分析:
根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
参考答案:
解:卡车的数量:
360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)
所以可用卡车12辆,客车9辆。
16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
思路分析:
根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
参考答案:
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
所以这条公路全长10800米。
17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
思路分析:
根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
参考答案:
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
所以每个纸箱可装鞋100双,每个木箱可装鞋150双
18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
思路分析:
由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
参考答案:
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
所以运进水泥180袋,沙子360袋。
19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
思路分析:
根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
参考答案:
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
所以每个保温瓶12元,每个茶杯3元。
20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
思路分析:
已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
参考答案:
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
所以这两个加数分别是52和520。
21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?
思路分析:
由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
参考答案:
解:9-(16-9)=9-7=2(千克)
所以桶重2千克。
22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
思路分析:
由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
参考答案:
解:(10-5.5)×2=9(千克)
所以原来有油9千克。
23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
思路分析:
由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
参考答案:
解:(22-10)÷(5-2)=12÷3=4(千克)
所以桶里原有水4千克。
24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
思路分析:
从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。
参考答案:
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
所以原来小红有23本,小华有13本。
25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
思路分析:
由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
参考答案:
解:15×5÷(5-2)=25(千克)
所以原来每桶油重25千克。
26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
思路分析:
把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
参考答案:
解:9÷(3-1)×(5-1)=18(分)
所以锯成5段需要18分钟。
27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
思路分析:
女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
参考答案:
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
所以原有男工87人,女工52人。
28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
思路分析:
由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。
参考答案:
解:12×5÷(5+1)=10(千米)
所以返回时平均每小时行10千米。
29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
思路分析:
由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
参考答案:
解:18÷(5+4)=2(小时)
8×2=16(千米)
所以狗跑了16千米。
30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
思路分析:
由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
参考答案:
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
所以白球有9个,红球有10个,黄球有11个。
解比例100道带答案共2
有3个人去投宿,一晚30元。
三个人每人掏了10元凑够30元交给了老板。
后来老板说今天优惠只要25元就够了,
拿出5元命令服务生退还给他们,
服务生偷偷藏起了2元,
然后,把剩下的3元钱分给了那三个人,
每人分到1元。
这样,一开始每人掏了10元,
现在又退回1元,
也就是10-1=9,
每人只花了9元钱,
3个人每人9元,
3 X 9 = 27元 + 服务生藏起的2元=29元,
还有一元钱去了哪里???
此题在新西兰面试的时候曾引起巨大反响。
有谁知道答案呢?(答案均见下端)
解比例100道带答案共3
解比例教案设计参考
教学目标
1.使学生理解解比例的意义.
2.使学生掌握解比例的方法,会解比例.
教学重点
使学生掌握解比例的方法,学会解比例.
教学难点
引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已
学过的含有未知数的等式.
教学过程
一、复习准备
(一)解下列简易方程,并口述过程.
2 =89
(二)什么叫做比例?什么叫做比例的'基本性质?
(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
(四)根据比例的基本性质,将下列各比例改写成其他等式.
3∶8=15∶40
二、新授教学
(一)揭示解比例不的意义.
1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.
2.学生交流
根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.
3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.
(二)教学例2.
例2.解比例 3∶8=15∶
1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.
2.组织学生交流并明确.
(1)根据比例的基本性质,可以把比例改写为:3 =815.
(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.
(3)规范并板书解比例的过程.
解:3=815
=40
(三)教学例3
例3.解比例
1.组织学生独立解答.
2.学生汇报
3.练习:解下面的比例.
=∶ = ∶
三、全课小结
这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.
四、巩固练习
(一)解下面的比例.
1.2.3.
(二)根据下面的条件列出比例,并且解比例.
1.5和8的比等于40与 的比.
2. 和 的比等于 和 的比.
3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.
五、布置作业
解比例100道带答案共4
21、动物园里大象的鼻子最长,那第二长的是谁呢?
【答案:】小象
22、哪种水果视力最差?
【答案:】芒果
23、哪两种蔬菜有手机?
【答案:】萝卜青菜,各有索爱
24、一只乌龟从一堆大便上走过,却只在上面留下3个脚印,为什么?
【答案:】有一只脚捏着鼻子呢
25、人为什么要走去床上睡觉呢?
【答案:】床不会自己走过来
26、原来其实是斯巴达800勇士,为什么到了电影里面变成300了?
【答案:】伍佰去唱歌了
27、小强为什么能用一只手让车子停下来?
【答案:】打的
28、如果有一辆车,司机是王子,乘客是公主,请问这辆车是谁的呢?
【答案:】如果的
29、金木水火土,谁的腿长?
【答案:】火腿肠
30用铁锤锤鸡蛋为什么锤不破?
【答案:】铁锤当然不会破了
解比例100道带答案共5
51专爱打听别人事的人是谁?
【答案:】记者
52谁说话的声音传得最远?
【答案:】打电话的人
53什么东西的制造日期和有效期是同一天?
【答案:】日报
54小咪昨晚花了整整一个晚上在历史课本上,可第二天妈妈还是骂她不用功,为什么?
【答案:】她用历史课本当枕头睡
55能否用树叶遮住天空?
【答案:】只要用树叶盖住眼睛
56一头牛,向北走10米,再向西走10米,再向南走10米,倒退右转,问牛的尾巴朝哪儿?
【答案:】朝地
57为什么黑人喜欢吃白色巧克力?
【答案:】害怕咬到自己的手
58把8分成两半,是多少?
【答案:】0
59口吃的人最吃亏的是?
【答案:】打国际长途电话
60什么东西使人哭笑不得?
【答案:】口罩
下一页查看更多>>>小学生脑筋急转弯解比例100道带答案共6
解比例教案
教学内容 教科书第50页例3,练习十一3~6题。 教学目标 1.使学生理解解比例的意义。 2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的.兴趣和自信。 教学重点 使学生掌握解比例的方法,学会解比例。 教学难点 建立解比例和解方程之间的联系。 教学过程: 一、出示课题:解比例. 二、出示目标: 1.使学生理解解比例的意义。 ?2.使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。 3.让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。 三、出示自学指导 看书35页:1、什么叫做解比例?2、重点看例2、例3、例2列出的比例中,X :320=1 :10转化成10x=320x1依据是什么? 3、例3中,1.5/2.5=6/x个比例和前面几个比例有什么不同?指出它的内项和外项。想:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解. ?5分钟后检测 四、先学、认真看书 检测 :自学指导 五、后教: 1、更正 2、讨论:怎样解比例?根据是什么? 3小结:像上面这样求比例中的未知项,叫做解比例。 六、当堂达标: (一)解下面的比例. 1.2/8=9/x 2、x/25 =1.2/75 (二)根据下面的条件列出比例,并且解比例. 1.5和8的比等于40与x 的比. 2.x 和3/4的比等于1/5和2/5的比. 3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8. 七、拓展练习: 1、如果一个比例中两个外项的积是最小的合数,其种一个内项是3/4,另一个内项是多少? 2、、如果一个比例中两个内项互为倒数,一个外项是2另一个外项多少? 八、回归目标: ?解比例100道带答案共7
1、青蛙为什么能比树跳得高?
【答案:】因为树不会跳
2“你跟猪站在一起”,猜一种动物
【答案:】象(像)
3、老王一天要刮四五十次脸,脸上却仍有胡子。这是什么原因?
【答案:】老王是个理发师
4、什么花不能摸
【答案:】火花
5、用什么可以解开所有的谜?
【答案:】答案
6、什么时候,时代广场的大钟会响13下?
【答案:】该修理的时候
7、在古时侯,什么人没当爸爸就先当公公了?
【答案:】太监
8、什么时候有人敲门,你绝不会说请进?
【答案:】上厕所的时候
9、黑鸡厉害还是白鸡厉害?为什么?
【答案:】黑鸡厉害,能下白蛋,白鸡下不了黑蛋。
10、为什么大家都喜欢坐着看电影?
【答案:】因为站着看脚会酸
解比例100道带答案共8
.一毛钱一个桃
三个桃核换一个桃
你拿1块钱能吃几个桃?
想明白了留言,把你吃桃的方法写明白 ~
解比例100道带答案共8篇(20道解比例题带答案)相关文章: