吸尘机的工作原理介绍11篇(吸尘机的工作原理介绍课文)

时间:2022-10-15 12:16:00 综合范文

  下面是范文网小编收集的吸尘机的工作原理介绍11篇(吸尘机的工作原理介绍课文),供大家参考。

吸尘机的工作原理介绍11篇(吸尘机的工作原理介绍课文)

吸尘机的工作原理介绍1

  一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。

  在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。它只有导通和关断两种状态。

  可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。

  可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。

  可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。

  可控硅从外形上分类主要有:螺栓形、平板形和平底形。

  1、可控硅元件的结构

  不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。

  2、 工作原理

  可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

  当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

  由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

  由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

  可控硅的基本伏安特性见图2

  图2 可控硅基本伏安特性

(1)反向特性

  当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向

(2)正向特性

  当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压

  图4 阳极加正向电压

  由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。

  这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段

  2、 触发导通

  图5 阳极和控制极均加正向电压

  图1、可控硅结构示意图和符号图

  3、可控硅在电路中的主要用途是什么?

  普通可控硅最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成可控硅,就可以构成可控整流电路。现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,可控硅被触发导通。现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。Ug到来得早,可控硅导通的时间就早;Ug到来得晚,可控硅导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内可控硅导通的电角度叫导通角θ。很明显,α和θ都是用来表示可控硅在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。

  4、 在桥式整流电路中,把二极管都换成可控硅是不是就成了可控整流电路了呢?

  在桥式整流电路中,只需要把两个二极管换成可控硅就能构成全波可控整流电路了。现在画出电路图和波形图(图5),就能看明白了

  5、可控硅控制极所需的触发脉冲是怎么产生的呢?

  可控硅触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小可控硅触发大可控硅的触发电路,等等。

  6、什么是单结晶体管?它有什么特殊性能呢?

  单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。我们先画出它的结构示意图〔图7(a)〕。在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联〔图7(b)〕。值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UE

  7、怎样利用单结晶体管组成可控硅触发电路呢?

  我们单独画出单结晶体管张弛振荡器的电路(图8)。它是由单结晶体管和RC充放电电路组成的。合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。这样,在R1两端输出的是尖顶触发脉冲。此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。这样周而复始,电路中进行着周期性的振荡。调节RP可以改变振荡周期

  8、在可控整流电路的波形图中,发现可控硅承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?

  为了实现整流电路输出电压“可控”,必须使可控硅承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。 怎样才能做到同步呢?大家再看调压器的电路图(图1)。请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。在可控硅没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。当交流电压过零瞬间,可控硅VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了可控硅的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。

  双向可控硅的T1和T2不能互换。否则会损坏管子和相关的控制电路。

[可控硅工作原理]

吸尘机的工作原理介绍2

  水泵工作原理

  水泵工作的目的就是把水从一个地方输送到另一个地方,或者是增加压力把原动的机械能转换成液体能量。

  水泵工作原理:在打开水泵后,叶轮在泵体内做高速旋转运动(打开水泵前要使泵体内充满液体),泵体内的液体随着叶轮一块转动,在离心力的作用下液体在出品处被叶轮甩出,甩出的.液体在泵体扩散室内速度逐渐变慢,液体被甩出后,叶轮中心处形成真空低压区,液池中的液体在外界大气压的作用下,经吸入管流入水泵内。泵体扩散室的容积是一定的,随着被甩出液体的增加,压力也逐渐增加,最后从水泵的出口被排出。液体就这样连续不断地从液池中被吸上来然后又连续不断地从水泵出口被排出去.

  离心式水泵启动前需要先注水,当泵转动时,先时注入的水排出,导致泵内及泵与井水之间的管道内的空气体积增大,气压降低,低于外界大气压,在大气压作用下(井内水面上方大气向下压力),井水被压到水水管内,随着泵的持续转动,地下水被抽出地面(其实是大气压把水压出地面)。

  一个标准大气压能够支撑10.336m水柱.

  水泵是利用一些人工的条件来增加送水高度的。

  比如,在第一个抽水机所能达到的最大高度处建一个小的蓄水池,然后在此处再用一台抽水机把水向上送,即采用多级泵送水。

  比如高压泵,通过增大水面上的大气压强来提高送水高度,比如将水面大气压增为两倍,送水高度便增为两倍。

  或者把水泵置于楼顶,设法做到让水泵从叶轮向下直到地下的整个进水管内都充满水。

  或者增大水泵功率,让水在离开叶轮向上运动时具有很大的动能,从而水就可以运动到很高处。

  方法是很多的~

/view/61cfa91cfc4ffe473368aba2.html

  我想问一下离心式水泵的操作原理,既然在水泵内产生了一个低压区,为什么大气压不把水从出水管里排回去呢

  这个低压区是与进水口相通的,由于低压,水就从进水口进去,水被叶轮带动旋转起来之后,由于离心的力量,被叶轮甩到了四周,由于叶轮在不停的旋转,在外周形成了高压区,由于是高压的,所以,水很难被压回去,不过也有少量的能退回去,这个称为内部泄露

  这个高压区和出水口相连,由于是高压的,所以,水要寻找出口出去,这边同时出, 进水口在同时入,形成平衡状态,.

吸尘机的工作原理介绍3

  浮球阀工作原理

  一、浮球阀的分类及特点

  1、塑料浮球阀

  塑料浮球阀是塑料制作的浮球阀,可以轻易的浮在水面上。塑料浮球阀具有自动开启、关闭管路,以控制水位的功能特点。塑料浮球阀的体积较小,安装较简便,启用灵敏度较高、水头损失小、无水锤现象,能大大提高水塔的利用率。

  2、小孔式浮球阀

  小孔式浮球阀具有自动开启关闭管路以及控制水位的功能。对于新建水塔,由于浮球体积的缩小,而使水塔上部应留给浮球自由浮动所需的高度也相应减小,降低了水塔的造价,克服了老式杆浮球阀体积大易损坏、工作不可靠而大量滋水的缺陷。

  3、不锈钢浮球阀

  不锈钢浮球阀与塑料浮球阀的功能基本上一样,但不锈钢浮球阀的价格却比塑料浮球阀的价格高,因为不锈钢浮球阀的使用是寿命高于塑料浮球阀。

  二、浮球阀的工作原理

  1、浮漂始终都要漂在水上,当水面上涨时,浮漂也跟着上升,漂上升就带动连杆也上升。连杆与另一端的阀门相连,当上升到一定位置时,连杆支起橡胶活塞垫,封闭水源。当水位下降时,浮漂也下降,连杆又带动活塞垫开启。

  2、浮球阀是通过控制液位来调节供液量的',满液式蒸发器要求液面保持一定高度,一般适合采用浮球膨胀阀。浮球阀工作原理是依靠浮球室中的浮球受液面作用的降低和升高,去控制一个阀门的开启或关闭。

  三、浮球阀的作用是什么

  卫生间的马桶水箱里就有一个浮球阀,大多数马桶中的浮球阀是塑料材质的浮球阀。卫生间马桶水箱会自动蓄水,浮球阀就是决定马桶水箱蓄水量多少的装置。当马桶水箱中的水位小于需要的水量时,马桶中的蓄水阀会自动打开,然后就会自动蓄水。而水位蓄到一定的高度之后,浮球阀的高度到达一定的位置,蓄水阀就会停止进水。浮球阀无论装置在哪里,最主要的作用就是起到控制水位的作用。

吸尘机的工作原理介绍4

  1.单级制冷循环系统

  单级制冷机是应用比较广泛的一类制冷机,它可以应用于制冰、空调、食品冷藏及工业生产过程等方面。单级制冷循环是指制冷剂在制冷系统内相继经过压缩、冷凝、节流、蒸发四个过程,便完成了单级制冷机的循环,即达到了制冷的目的。

  制冷系统由蒸发器、单级压缩机、油分离器、冷凝器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,蒸发器是输送冷量的设备,液态制冷剂蒸发后吸收被冷却物体的热量实现制冷;压缩机是系统的心脏,起着吸入、压缩、输送制冷剂蒸汽的作用;油分离器用于沉降分离压缩后的制冷剂蒸汽中的油;冷凝器将压缩机排出的高温制冷剂蒸汽冷凝成为饱和液体;贮氨器用来贮存冷凝器里冷凝的制冷剂氨液,调节冷凝器和蒸发器之间制冷剂氨液的供需关系;氨液分离器是氨重力供液系统中的重要附属设备;节流阀对制冷剂起节流降压作用同时控制和调节流入蒸发器中制冷剂液体的流量,并将系统分为高压侧和低压侧两部分。

  单级流程示意图

  2.双级制冷循环系统

  双级制冷循环是在单级制冷循环的基础上发展起来的`,其压缩过程分两个阶段进行,来自蒸发器的制冷剂蒸汽先进入低压级汽缸压缩到中间压力,经过中间冷却后再进入高压级汽缸,压缩到冷凝压力进入冷凝器中。一般蒸发温度在-25℃~-50℃时,应采用双级压缩机进行制冷。 制冷系统由蒸发器、双级压缩机、油分离器、冷凝器、中间冷却器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,中间冷却器利用少量液态制冷工质在中间压力下汽化吸热,使低压级排出的过热蒸汽得到冷却,降低高压级的吸气温度,同时还使高压液态制冷工质得到冷却。

  双级流程示意图

  3.蒸发式冷凝器运行原理

  进入冷凝盘管的高温气态制冷剂通过盘管壁与盘管外侧喷淋水和空气进行热交换,制冷剂气体的温度随着在管内的时间加长而下降,由气态逐渐变成液态。用风机超强风力,使喷淋水充分覆盖在盘管外表面上,从而提高了换热效率。喷淋水和空气吸收盘管壁的热量后温度升高,部分水由液态变成气态,带走管壁上大量热量,湿热空气中的水份被挡水板截住引入PVC热交换层中,热空气排出。PVC热交换层中的水被流过的新风冷却,温度降低,流入集水槽中,再由水泵送入喷淋系统中,继续循环。散失到空气中的水份由水位控制装置自动调节补充。

吸尘机的工作原理介绍5

  家用电器中空调是很常见的一种,特别是在南方,冬天的时候会很冷,而且没有暖气,有了空调就会驱走冬天的寒冷,而且到了夏天也是很热的,就更离不开空调了,空调给我们做出的贡献真的是很大,但是大家真正对这一电器了解吗,知道空调工作原理吗,下面我们就来长长见识吧。

  空调家里应该都有吧,空调最常用的功能就是制热,制冷,空调的这些功能都是很神奇的,只是大家不怎么了解,对空调工作原理更是没有意识了,如果大家了解了空调的工作原理,也能够帮助我们更好的选择和维修。

  家用空调器一般都是采用机械压缩式的制冷装置,其基本的元件共有四件:压缩机、蒸发器、冷凝器和节流装置,四者是相通的,其中充灌着制冷剂(又称制冷工质)。压缩机象一颗奔腾的心脏使得制冷剂如血液一样在空调器中连续不断的流动,实现对房间温度进行调节。

  制冷剂通常以几种形态存在:液态、气态和气液混合物。在这几种状态互相转化中,会造成热量的吸收和散发,从而引起外界环境温度的变化。在从气态向液态转化的过程,称为液化,会放出热量;反之,从液态向气态转化的过程,叫做汽化(包括蒸发和沸腾)要从外界吸收热量。

  首先,低压的气态制冷剂被吸入压缩机,被压缩成高温高压的气体;而后,气态制冷剂流到室外的冷凝器,在向室外散热过程中,逐渐冷凝成高压液体;接着,通过节流装置降压(同时也降温)又变成低温低压的气液混合物。此时,气液混合的制冷剂就可以发挥空调制冷的“威力”了:它进入室内的蒸发器,通过吸收室内空气中的热量而不断汽化,这样,房间的温度降低了,它也又变成了低压气体,重新进入了压缩机。如此循环往复,空调就可以连续不断的运转工作了。

  制冷剂真是神奇!它是怎样在高温下冷凝向外界散发热量又在低温下蒸发从外界吸收热量呢?这与制冷剂本身的性质有关,大家知道,在山顶上煮鸡蛋很难煮熟,而用高压锅做饭时,鱼和肉等食品很快就能做熟,这是因为随着压力的升高,水的饱和温度(通常叫做沸点)也升高。所以,在大气压低于标准大气压的情况下,水的沸点低于100oC,反之则高于100oC。同理,高温高压气态制冷剂从压缩机出来时饱和温度要高于室外气温。通过不断散热并开始液化后,其温度依然很高,甚至在其完全变成液态后,仍继续向室外空气散热;而在室内,情况则相反,由于经过节流装置,制冷剂的压力和温度都降低很多,它的饱和温度也比室内气温低,这才能够连续不断的从室内空气中吸收热量。

  空调工作原理是依据一些科学原理的,多学习一些也能够增长我们这方面的知识,特别是对于空调的维修人员来说,对空调是怎么工作的都是很了解的,我们是不是感觉空调真的很神奇呢,特别是科学的进步,让我们的生活越来越高科技。

吸尘机的工作原理介绍6

  说到了电热水器,相信很多家庭几乎都会使用到这种电器。而电热水器在使用起来是比较方便一些,而且还能够短时间内使水快速地升温,还有能够起到一定的保温作用,这样大大地方便和减少了在冬季等洗澡的时候等热水升温的时间了。因此很多朋友都想要知道底电热水器工作原理是什么呢?

  其实很多朋友对于电热水器工作原理是比较感兴趣的,其实电热水器主要是利用温控器使水在短时间内快速地加热的,此外还要靠保温层来保温,使水温在短时间内不会降低等。那么到底电热水器工作原理是什么呢?

  许多人都有一颗好奇的心,他们总是对自己觉得很新奇的事物充满兴趣,随着电热水器在我们的日常生活中普及率的不断上升,有的朋友急切的想要知道电热水器的工作原理,并试图自己亲手制作。

  电热水器的工作原理

  电热水器是经过温控器的通与断完成加热与不加热的,普通概念的保温,就是短时间的加热。加热时,依然用的是热水器的额定功率。电路接通后,假如水温低于50℃(大多数品牌设定的临界温度),温控器自动接通,热水器开端加热,水温抵达热水器预置的温度(大多数品牌为75℃~85℃)时,温控器断开,热水器中止加热。

  所谓的保温,是完整靠热水器的保温层来完成的,随着水温的不时降落,直到低于50℃时,热水器再次开端加热。如此循环往复,完成了所谓的保温。保温灯量时,热水器是不耗电的,接近于理论上的零功率、零电耗。加热时,热水器运用的是额定功率。要理解热水器保温时的均匀功耗,看看国度规范就能够了。大致数值是,即使不用一滴热水,热水器仅仅“保温”的电耗在2度左右/24小时。

  电热水器的正确使用办法。

  1.运用电热水器时,接通电源,指示灯亮,表示正在电加热,当水温到达设定值后,指示灯熄灭,表示切断电源。这样指示灯时亮、时熄表示正在自动保温。

  2.电热水器(贮水式)要先注满水,再通电加热,经预热后即可运用。如遇到水源压力降落或忽然停水,最好关闭电源。

  3.电热水器都配有水龙头,并带有回流安装,通常用“蓝色”表示冷水,用“红色”表示热水。运用时,旋开“红色,”水龙头,就有热水流出,此时如水温过高,可同时旋开“蓝色”水龙头,并调理出水量大小,即可得到适温的热水。

  4.电热水器的温度调理器上,都有水温标志刻度,如用“I”、“Ⅱ”、“Ⅲ”或标示英文、阿拉伯数字表示水温低、中、高的调理位置,把温度调理旋钮对准某个标志,热水器的水温就会坚持在该档指示所设定的温度。在运用时,先让水洒出来试出实践水温,才干停止淋浴,避免水温过高,烫伤皮肤。

  5.上水时必需将出水口翻开,等内胆里的空气完整排出后才干检查水能否注满。

  6.排绝后必需先将电源切断。

  7.作封锁式装置时,加热期间进水阀必需处于开启状态。

  8.刚翻开阀门时,不要把出水方向对着人体。

  以上介绍了关于电热水器工作原理,相信大家已经有所认识了。其实在使用电热水器的时候一定要掌握正确的方法,如果遇到突然停水的时候,最好要及时关闭电源,此外在洗澡的时候如果水温过热就应该及时调整温度,以免烫伤皮肤了,大家要记住了。

吸尘机的工作原理介绍7

  显卡的部件与工作原理介绍:

  显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存,不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。显卡决定如何使用屏幕上的像素来生成图像。之后,它通过线缆将这些信息发送到监视器。

  显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色,

  根据二进制数据生成图像是一个很费力的过程。为了生成三维图像,显卡首先要用直线创建一个线框。然后,它对图像进行光栅化处理(填充剩余的像素)。此外,显卡还需添加明暗光线、纹理和颜色。对于快节奏的游戏,电脑每秒钟必须执行此过程约60次。如果没有显卡来执行必要的计算,则电脑将无法承担如此大的工作负荷。

  显卡工作的四个主要部件

  显卡在完成工作的时候主要靠四个部件协调来完成工作,主板连接设备,用于传输数据和供电,处理器用于决定如何处理屏幕上的每个像素,内存用于存放有关每个像素的信息以及暂时存储已完成的图像,监视器连接设备便于我们查看最终结果。

吸尘机的工作原理介绍8

  显卡全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。这里给大家分享一些关于电脑显卡工作原理介绍,希望对大家能有所帮助。

  显卡的简介

  显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD超微半导体和Nvidia英伟达2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。

  电脑显卡怎么看

  首先要再电脑桌面上面鼠标右键点击我的电脑图标,然后在下拉菜单上面点击属性

  点击属性以后进入到属性窗口,在属性窗口上面点击硬件

  点击硬件以后进入到硬件窗口,在窗口上面的设备管理器栏里面点击设备管理器按钮

  点击设备管理器按钮以后打开设备管理器窗口,在窗口上面点击最下面的’显示卡左侧的加号

  点击显示卡左侧的加号以后就会看到自己的电脑上面配置的显卡是什么样的了

  显卡的工作原理

  数据data一旦离开CPU,必须通过4个步骤,最后才会到达显示屏:

  1.从总线Bus进入GPUGraphics Processing Unit,图形处理器:将CPU送来的数据送到北桥主桥再送到GPU图形处理器里面进行处理。

  2.从 Video Chipset显卡芯片组进入 Video RAM显存:将芯片处理完的数据送到显存。

  3.从显存进入Digital Analog Converter = RAM DAC,随机读写存储数—模转换器:从显存读取出数据再送到RAM DAC进行数据转换的工作数字信号转模拟信号。但是如果是DVI接口类型的显卡,则不需要经过数字信号转模拟信号。而直接输出数字信号。

  4.从DAC进入显示器Monitor:将转换完的模拟信号送到显示屏。

  显示效能是系统效能的一部分,其效能的高低由以上四步所决定,它与显示卡的效能Video Performance不太一样,如要严格区分,显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是在显示卡的内部。第一步是由CPU运算器和控制器一起组成的计算机的核心,称为微处理器或中央处理器进入到显示卡里面,最后一步是由显示卡直接送资料到显示屏上。

  装显卡后核显还工作吗

  以电脑为例,装显卡后核显还工作,一般都是独显来处理显示运算任务,然后由核显来输出至显示器,会省电一些。

吸尘机的工作原理介绍9

  安全泄压阀是由主阀和先导阀及其它外装附件组成,其主阀由阀体、膜片、阀杆、组件、主阀板、阀座等组成,通过外装附件及先导阀实现安全泄压,

  图一??结构示意图

  1、闸阀???2、过滤器???3、先导阀??4、压力表

  工作原理

  安全泄压阀是通过进口压力的变化,反馈到导阀上,再由导阀来控制主阀板的启闭,使管路中的压力能保持安全稳定的状态,一旦超压,能及时泄压,

  当管路中的压力超过先导阀的设定值时,进口压力水从控制管进入先导阀膜片下腔内,使其压力增高,推动先导阀阀杆上移,先导阀阀板打开,主阀控制室上腔的水从先导阀和控制管排泄,在进口压力水的作用下,主阀板打开。

  当管路中的压力下降至低于设定值时,先导阀膜片下腔的压力降低,先导阀阀杆下移,使其阀板关闭。从而导致从控制管进入先导阀再到主阀控制室上腔的压力水的压力增高,在上腔水压作用下主阀板关闭。

吸尘机的工作原理介绍10

  热敏电阻是热电阻的一种,所以说,原理都是温度引起电阻变化。但是现在热电阻一般都被工业化了,基本是指PT100,CU50等常用热电阻他两的区别是:一般热电阻都是指金属热电阻(PT100)等,热敏电阻都是指半导体热电阻由于半导体热电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化,而且电阻值可在0.1~100kΩ间任意选择。所以称为热敏电阻但是热敏电阻阻值随温度变化的曲线呈非线性,而且每个相同型号的'线性度也不一样,并且测温范围比较小。所以工业上一般用金属热电阻~也就是我们平常所说的热电阻。而热敏电阻一般用在电路板里,比如像通常所说的可以类似于一个保险丝。由于其阻值随温度变化大,可以作为保护器使用。当然这只是一方面,它的用途也很多,如热电偶的冷端温度补偿就是靠热敏电阻来补偿。另外,由于其阻值与温度的关系非线性严重……所以元件的一致性很差,并不能像热电阻一样有标准信号。热敏电阻工作原理NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。

  应用设计:

  NTC 热敏电阻的基本物理物性有:电阻值、B值、耗散系数、时间常数。电 阻 值 R(kΩ):

  电阻值可以近似地用如下公式表达:

  其中: R1、R2 为绝对温度下T1、T2 时的电阻值(kΩ);

  B:B值(K)B 值: B (K):B值反映了两个温度之间的电阻变化,可用下述公式计算:其中: R1、R2 绝对温度T1、T2时的电阻值(Ω)耗 散 系 数 δ(mW/℃): 耗散系数是指热敏电阻消耗的功率与环境温度变化之比:

  其中:W 热敏电阻消耗的功率(mW)

  T 热平衡时的温度

  To 周围环境温度

  I 在温度T时通过热敏电阻电流

  R 在温度T时热敏电阻的电阻值(Ω)

  时间常数τ (sec.):

  热敏电阻在零功率状态下,当环境温度由一个特定温度向另一个特定温度突变时, 温度变化63.2%所需时间。

吸尘机的工作原理介绍11

  VFD工作原理

  开关电源简化电路图

  变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向――振荡回路、稳压回路、保护回路和负载回路等。

  看一下电路中有几路脉络。

  1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。

  当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。

  2、稳压回路:N3、D3、C4等的+5V电源,R7―R10、PC3、R5、R6等元件构成了稳压控制回路。

  当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。

  3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号――稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的.异常所引起。

  4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。

  振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。

  开关电源电路常表现为以下三种典型故障现象(结合图3、9):

  一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指示,测量控制端子的24V和10V电压为0V。检查主电路充电电阻或预充电回路完好,可判断为开关电源故障。检修步骤如下:

  1、先用电阻测量法测量开关管Q1有无击穿短路现象,电流取样电阻R4有无开路。电路易损坏元件为开关管,当其损坏后,R4因受冲击而阻值变大或断路。Q1的G极串联电阻、振荡芯片PC1往往受强电冲击而损坏,须同时更换;检查负载回路有无短路现象,排除。

  2、更换损坏件,或未检测中有短路元件,可进行上电检查,进一步判断故障是出在振荡回路还是稳压回路。

  检查方法:

  a、先检查启动电阻R1有无断路。正常后,用18V直流电源直接送入UC3844的7、5脚,为振荡电路单独上电。测量8脚应有5V电压输出;6脚应有1V左右的电压输出。说明振荡回路基本正常,故障在稳压回路;

  若测量8脚有5V电压输出,但6脚电压为0V,查8、4脚外接R、C定时元件,6脚外围电路;

  若测量8脚、6脚电压都为0V,UC3844振荡芯片坏掉,更换。

  B、对UC3844单独上电,短接PC2输入侧,若电路起振,说明故障在PC2输入侧外围电路;电路仍不起振,查PC2输出侧电路。

  二、开关电源出现间歇振荡,能听到“打嗝”声或“吱、吱”声,或听不到“打嗝”声,但操作显示面板时亮时熄。这是因负载电路异常,导致电源过载,引发过流保护电路动作的典型故障特征。负载电流的异常上升,引起初级绕组激磁电流的大幅度上升,在电流采样电阻R4形成1V以上的电压信号,使UC3844内部电流检测电路起控,电路停振;R4上过流信号消失,电路又重新起振,如此循环往复,电源出现间歇振荡。

  检查方法:

  a、测量供电电路C4、C5两端电阻值,如有短路直通现象,可能为整流二极管D3、D4有短路;观察C4、C5外观有无鼓顶、喷液等现象,必要时拆下检测;供电电路无异常,可能为负载电路有短路故障元件;

  B、检查供电电路无异常,上电,用排除法,对各路供电进行逐一排除。如拔下风扇供电端子,开关电源工作正常,操作显示面板正常显示,则为24V散热风扇已经损坏;拔下+5V供电接子或切断供电铜箔,开关电源正常工作,则为+5V负载电路有损坏元件。

  三、负载电路的供电电压过高或过低。开关电源的振荡回路正常,问题出在稳压回路。

  输出电压过高,稳压回路的元件损坏或低效,使反馈电压幅度不足。检查方法: a、在PC2输出端并接10k电阻,输出电压回落。说明PC2输出侧稳压电路正常,故障在PC2本身及输入侧电路;

  B、在R7上并联500Ω电阻,输出电压有显著回落。说明光电耦合器PC2良好,故障为PC3低效或PC3外接电阻元件变值。反之,为PC2不良。

  负载供电电压过低,有三个故障可能:1、负载过重,使输出电压下降;2、稳压回路元件不良,导致电压反馈信号过大;3、开关管低效,使电路(开关变压器)换能不足。

  检查与修复方法:

  a、将供电支路的负载电路逐一解除(注意!不要以开路该路供电整流管的方法来脱开负载电路,尤其是接有稳压反馈信号的+5V供电电路!反馈电压信号的消失,会导致各路输出电压异常升高,而将负载电路大片烧毁!)判断是否由于负载过重引起电压回落;如切断某路供电后,电路回升到正常值,说明开关电源本身正常,检查负载电路;输出电压低,检查稳压回路。

  B、检查稳压回路的电阻元件R5―R10,无变值现象;逐一代换PC2、PC3,若正常,说明代换元件低效,导通内阻变大。

  c、代换PC2、PC3若无效,故障可能为开关管低效,或开关和激励电路有问题,也不排除UC3844内部输出电路低效。更换优质开关管、UC3844。

  对于一般性故障,上述故障排查法是有效的,但不一定百分之百地灵光。若检查振荡回路、稳压回路、负载回路都无异常,电路还是输出电压低,或间歇振荡,或干脆毫无反应,这此情况都有可能出现。先不要犯愁,让我们往深入里分析一下电路故障的原因,以帮助尽快查出故障元件。电路的间歇振荡或停振的原因不在起振回路和稳压回路时,还有哪些原因可导致电路不起振呢?

(1)主绕组N1两端并联的R、D、C电路,为尖峰电压吸收网络,提供开关管截止期间,储存在变压器中磁场能量的泄放通路(开关管的反向电流通道),保护了开关管不被过压击穿。当D2或C4严重漏电或击穿短路时,电源相当于加上了一个很重的负载,使输出电压严重回落,U3844供电不足,内部欠电压保护电路起控,而导致电路进入间歇振荡。因元件并联在N1绕组上,短路后不易测出,往往被忽略;

(2)有的开关电源有输入供电电压的(电压过高)保护电路,一旦电路本身故障,使电路出现误过压保护动作,电路停振;

(3)电流采样电阻不良,如引脚氧化、碳化或阻值变大时,导致压降上升,出现误过流保护,使电路进入间歇振荡状态;

(4)自供电绕组的整流二极管D1低效,正向导通内阻变大,电路不能起振,更换试验;

(5)开关变压器因绕组发霉、受潮等,品质因数降低,用原型号变压器代换试验;

(6)R1起振电路参数变异,但测量不出异常,或开关管低效,此时遍查电路无异常,但就是不起振。

  修理方法:

  变动一下电路既有参数和状态,让故障暴露出来!试减小R1的电阻值(不宜低于200kΩ以下),电路能起振。此法也可做为应急修理手段之一。无效,更换开关管、UC3844、开关变压器试验。

  输出电压总是偏高或偏低一点,达不到正常值。检查不出电路和元件的异常,几乎换掉了电路中所有元件,电路的输出电压值还是在“勉强与凑合”状态,有时好像能“正常工作”了,但让人心里不踏实,好像神经质似的,不知什么时候会来个“反常表现”。不要放弃,调整一下电路参数,使输出电路达到正常值,达到其工作状态,让我们“放心”的地步。电路参数的变异,有以下几种原因:

  1、晶体管低效,如三极管放大倍数降低,或导通内阻变大,二极管正向电阻变大,反向电阻变小等;

  2、用万用表不能测出的电容的相关介质损耗、频率损耗等;

  3、晶体管、芯片器件的老化和参数漂移,如光电耦合器的光传递效率变低等;

  4、电感元件,如开关变压器的Q值降低等;

  5、电阻元件的阻值变异,但不显著。

  6、上述5种原因有数种参于其中,形成“综合作用”。

  由各种原因形成的电路的“现在的”这种状态,是一种“病态”,也许我们得换一下检修思路了,中医有一个“辨证施治的”理论,我们也要用一下了,下一个方子,不是针对哪一个元件,而是将整个电路“调理”一下,使之由“病态”趋于“常态”。就这么“模糊着糊涂着”,把病就给治了。

  修理方法(元件数值的轻微调整):

  1、输出电压偏低:

  a、增大R5或减小R6电阻值;b、减小R7、R8电阻值或加大R9电阻值。

  2、输出电压偏高:

  a、减小R5或增大R6电阻值;b、增大R7、R8电阻值或减小R9电阻值。 上述调整的目的,是在对电路进行彻底检查,换掉低效元件后,进行的。目的是调整稳压反馈电路的相关增益,使振荡芯片输出的脉冲占空比变化,开关变压器的储能变化,使次级绕组的输出电压达到正常值,电路进入一个新的“正常的平衡”状态。

  好多看似不可修复的疑难故障,就这样经过一、两只电阻值的调整,波澜无惊地修复了。

  检修中须注意的问题:1、在开关电源检查和修复过程中,应切断三相输出电路IGBT模块的供电,以防止驱动供电异常,造成IGBT模块的损坏;2、在修理输出电压过高的故障时,更要切断+5V对CPU主板的供电,以免异常或高电压损坏CPU,造成CPU主板报废。3、不可使稳压回路中断,将导致输出电压异常升高!

  4、开关电源电路的二极管,用于整流和用于保护的,都为高速二极管或肖基特二极管,不可用普通IN4000系列整流二极管代用。4、开关管损坏后,最好换用原型号的,现在网络这么发达VFD工作原理,货物来源不成问题,一般都能购到的。淘宝网上许多东西都能以便宜的价格购到,注意质量!

吸尘机的工作原理介绍11篇(吸尘机的工作原理介绍课文)相关文章:

太阳能热水器工作原理图大全3篇 家用太阳能热水器原理示意图

液压挖掘机手岗位职责共6篇(挖掘机液压传动的工作原理及组成)

排涝站岗位职责共3篇(排涝站工作原理)

离心机脱水岗位职责是什么共5篇(脱水离心机工作原理)

雷蒙磨粉机岗位职责共3篇(雷蒙磨粉机工作原理图)

布袋收尘器岗位职责共4篇 袋装收尘器工作原理

磁选机岗位职责共5篇(选煤厂磁选机工作原理)