下面是范文网小编整理的七年级下北师大版数学教案3篇 北师大数学七年级上教案,供大家参阅。
七年级下北师大版数学教案1
教学目的
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)
[先要求出师傅与徒弟各完成的工作量是多少?]
两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2
师傅完成的工作量为= ,徒弟完成的工作量为=
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现
由甲独做10小时;
请你提出问题,并加以解答。
例如 (1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之
间的关系,即 工作量=工作效率×工作时间
工作效率= 工作时间=
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.3第1、2题。
七年级下北师大版数学教案 教学目的 借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。 重点、难点 1.重点:列一元一次方程解决有关行程问题。 2.难点:间接设未知数。 教学过程 一、复习 1.列一元一次方程解应用题的一般步骤和方法是什么? 2.行程问题中的基本数量关系是什么? 路程=速度×时间 速度=路程 / 时间 二、新授 例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远? 画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。 1.坐公共汽车行了多少路程?乘的士行了多少路程? 2.乘公共汽车用了多少时间,乘出租车用了多少时间? 3.如果都乘公共汽车到火车站要多少时间? 4,等量关系是什么? 如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。 可设公共汽车从小张家到火车站要x小时。 设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。 三、巩固练习 教科书第17页练习1、2。 四、小结 有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。 四、作业 教科书习题6.3.2,第1至5题。 教学目的 通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。 重点、难点 1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。 2.难点:找出能表示整个题意的等量关系。 教学过程 一、复习 1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数 本利和=本金×利息×年数+本金 2.商品利润等有关知识。 利润=售价-成本 ; =商品利润率 二、新授 问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 利息-利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%×X×2,利息税为2.43%X×2×20% 根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得 2.43%x·2·80%=48.6 解方程,得 x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折
(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么 每件服装的标价为:(1+40%)x 每件服装的实际售价为:(1+40%)x·80% 每件服装的利润为:(1+40%)x·80%-x 由等量关系,列出方程: (1+40%)x·80%-x=15 解方程,得 x=125 答:每件服装的成本是125元。 三、巩固练习 教科书第15页,练习1、2。 四、小结 当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。 五、作业 教科书第16页,习题6.3.1,第4、5题。 七年级下北师大版数学教案3篇 北师大数学七年级上教案相关文章:七年级下北师大版数学教案2
七年级下北师大版数学教案3
相关热词搜索:七年级北师大版数学教案 七年级下数学教案