精选八年级数学教案3篇 初中8年级数学教案

时间:2023-06-20 15:33:00 教案

  下面是范文网小编分享的精选八年级数学教案3篇 初中8年级数学教案,供大家品鉴。

精选八年级数学教案3篇 初中8年级数学教案

精选八年级数学教案1

  知识结构:

  重点与难点分析:

  本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

  本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

  教法建议:

  本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生学习过互逆命题和互逆定理的.概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

  (2)采用“类比”的学习方法,获取知识。

  由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

  (3)总结,形成知识结构

  为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

  一.教学目标:

  1.使学生掌握等腰三角形的判定定理及其推论;

  2.掌握等腰三角形判定定理的运用;

  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  4.通过自主学习的发展体验获取数学知识的感受;

  5.通过知识的纵横迁移感受数学的辩证特征.

  二.教学重点:等腰三角形的判定定理

  三.教学难点:性质与判定的区别

  四.教学用具:直尺,微机

  五.教学方法:以学生为主体的讨论探索法

  六.教学过程:

  1、新课背景知识复习

  (1)请同学们说出互逆命题和互逆定理的概念

  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

  (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

  1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

  (简称“等角对等边”).

  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  已知:如图,△ABC中,∠B=∠C.

  求证:AB=AC.

  教师可引导学生分析:

  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

  2.推论1:三个角都相等的三角形是等边三角形.

  推论2:有一个角等于60°的等腰三角形是等边三角形.

  要让学生自己推证这两条推论.

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

  3.应用举例

  例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求证:AB=AC.

  证明:(略)由学生板演即可.

  补充例题:(投影展示)

  1.已知:如图,AB=AD,∠B=∠D.

  求证:CB=CD.

  分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

  证明:连结BD,在 中, (已知)

  (等边对等角)

  (已知)

  即

  (等教对等边)

  小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

  2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

  分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

  证明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小结:

  (1)等腰三角形判定定理及推论.

  (2)等腰三角形和等边三角形的证法.

  七.练习

  教材 P.75中1、2、3.

  八.作业

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板书设计

精选八年级数学教案2

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

精选八年级数学教案3

  第一步:情景创设

  乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

  A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

  (1)请你算一算它们的平均数和极差。

  (2)是否由此就断定两厂生产的乒乓球直径同样标准?

  今天我们一起来探索这个问题。

  探索活动

  通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动

  算一算

  把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

  想一想

  你认为哪种方法更能明显反映数据的波动情况?

  第二步:讲授新知:

  (一)方差

  定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用

  来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

  意义:用来衡量一批数据的波动大小

  在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定

  归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小

  (3)方差主要应用在平均数相等或接近时

  (4)方差大波动大,方差小波动小,一般选波动小的

  方差的简便公式:

  推导:以3个数为例

  (二)标准差:

  方差的算术平方根,即④

  并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

  注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

精选八年级数学教案3篇 初中8年级数学教案相关文章:

小班数学教案3篇 小班数学教案反思

实用大班数学教案3篇(大班数学教案大全)

精品小学数学教案5篇 优秀小学数学教案模板

高一数学对数的运算数学教案2篇 高一数学题对数运算

数学四年级教案《练习四》12篇 四年级数学练习教案怎么写

大班数学教案3篇 大班数学教案设计意图

关于八年级数学教案5篇(八年级数学优秀教案)

最新一年级数学教案4篇 一年级数学优秀教案

人教版三年级上册数学教案4篇 小学三年级人教版上册数学教案

关于八年级生物教案模板6篇 八年级生物教学设计模板