下面是范文网小编整理的八年级数学教案范文6篇(初二数学备课教案范文),供大家阅读。
八年级数学教案范文1
总课时:7课时 使用人:
备课时间:第八周 上课时间:第十周
第4课时:5、2平面直角坐标系(2)
教学目标
知识与技能
1.在给定的直角坐标系下,会根据坐标描出点的位置;
2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
过程与方法
1.经历画坐标 系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作 交流能力;
2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
情感态度与价值观
通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学过程
第一环节 感 受生活中的情境,导入新课(10分钟,学生自己绘图找点)
在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点 的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列 各点以及所在象限或坐标轴:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取学生作答)
由点找坐标是已知点在直角坐标 系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让 你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
第二环节 分类讨论,探索新知.(15分钟,小组讨论,全班交流)
1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),( -3,3)
( 学生操作完毕后)
2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它像什么?
分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?
(出示学生的作品)画出是 这样的吗?这幅图画很美,你们觉得它像什么?
这个图形像一栋房子旁边还有一棵大树。
3.做一做
(出示投影)
在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)
(拿出一位做对的学生的作品投影)
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
(像猫脸)
第三环节 学有所用.(10分钟,先独立完成,后小组讨论)
(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
观察所得的图形,你觉得它像什么?(像移动的菱形)
2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。
先独立完成,然后小组讨论是否正确。
第四环节 感悟与收获(5分钟,学生总结,全班交流)
本节课在复习上节课的基础上,通过找点、连 线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。
第五环节 布置作业
习题5、4
A组(优等生)1、2、3
B组(中等生)1、2
C组(后三分之一生)1、2
八年级数学教案范文2
单元(章)主题第三章 直棱柱任课教师与班级
本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时
教学目标(含重点、难点)及
设置依据教学目标
1、了解多面体、直棱柱的有关概念.
2、会认直棱柱的侧棱、侧面、底面.
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.
教学重点与难点
教学重点:直棱柱的有关概念.
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型
教 学 过 程
内容与环节预设、简明设计意图二度备课(即时反思与纠正)
一、创设情景,引入新课
师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
二、合作交流,探求新知
1.多面体、棱、顶点概念:
师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?
析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点
2.合作交流
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描
述其特征。)
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的相邻两条侧棱互相平行且相等。
4.学以至用
出示例题。(先请学生单独考虑,再作讲解)
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)
最后完成例题中的“想一想”
5.巩固练习(学生练习)
完成“课内练习”
三、小结回顾,反思提高
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计
作业布置或设计作业本及课时特训
八年级数学教案范文3
教学目标:
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
教学重点:
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
教学难点:
解分式方程的一般步骤。
教学过程:
复习引入:
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(学生板演)
讲授新课:
1、由上述学生的板演归纳出解分式方程的一般步骤
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
(3)检验:将所得的解代入原方程的最简公分母,若最简公分母为0,则为增根,必须舍去;若不为0,则为原方程的根、
2、范例讲解
(学生尝试练习后,教师讲评)
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)
2、解分式方程的步骤、
巩固练习:P1471t,2t、
课堂小结:解分式方程的一般步骤
布置作业:见作业本。
八年级数学教案范文4
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式 =a (x0)中,规定x = .
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、练习
P69练习 1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
八年级数学教案范文5
【教学目标】
知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。
能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。
情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
重点:中心对称图形的概念和性质。
难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。
关键:已知点A和点O,会作点Aˊ,使点Aˊ与点A关于点O成中心对称。
【课前准备】
叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。
【教学过程】
一.复习
回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。
二.创设情境
用剪好的图案,让学生欣赏。师:这剪纸有哪些变换?生:轴对称变换。师:指出对称轴。生:(能结合图案讲)。生:还有旋转变换。师:指出旋转中心、旋转的角度?生:90°、180°、270°。
三、合作学习
1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点O旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。
探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点O旋转180°,学生动手后发现:平行四边形ABCD旋转180°后所得的像与原图形重合。师:为什么重合?师:作适当解释或学生自己发现:∵OA=OC,∴点A绕点O旋转180°与点C重合。同理可得,点C绕点O旋转180°与点A重合。点B绕点O旋转180°与点D重合。点D绕点O旋转180°与点B重合。
2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。
师:等边三角形是中心对称图形吗?生:不是。
3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。
平形四边形是轴对称图形吗?答:不是轴对称图形。
4、两个图形关于点O成中心对称的概念:如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。
中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。
相同点:都有旋转中心,旋转180°后都会重合。
做一做: P109
5、根据中心对称图形的定义,得出中心对称图形的性质:
对称中心平分连结两个对称点的线段
通过中心对称的概念,得到P109性质后,主要是理解与应用。如右图,若A、B关于点O的成中心对称,∴点O是A、B的对称中心。
反之,已知点A、点O,作点B,使点A、B关于以O为对称中心的对称点。让学生练习,多数学生会做,若不会做,教师作适当的启发。
做P106例2,让学生思考1~2分钟,然后师生共同解答。
(P106)例2 解:∵平行四边形是中心对称图形,O是对称中心,
EF经过点O,分别交AB、CD于E、F。
∴点E、F是关于点O的对称点。
∴OE=OF。
四、应用新知,拓展提高
例 如图,已知△ABC和点O,作△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称。
分析:先让学生作点A关于以点O为对称中心的对称点Aˊ,
同理:作点B关于以点O为对称中心的对称点Bˊ,
作点C关于以点O为对称中心的对称点Cˊ。
∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。解:略。
课内练习P110
小结
今天我们学习了些什么?
1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。
2、会作中心对称图形,关键是会作点A关于以O为对称中心的对称点Aˊ。
3、我们已学过的中心对称图形有哪些?
作业
P110 A组1、2、3、4,B组5、6必做C组7选做。
八年级数学教案范文6
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的`差称为极差(range).
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案范文6篇(初二数学备课教案范文)相关文章: