六年级数学下册教案【精品8篇】

时间:2023-09-10 08:30:17 教案

六年级数学下册教案 篇1

  教学目标:

  1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

  2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。

  3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

  4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

  教学重点:确定运算顺序再进行计算。

  教学难点:明确混合运算的顺序。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

  2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)+÷4―3×

(3)÷[(+)×] (4)[7+(—)]×(―39)

  3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

  二、新知探究

(一)、教学例4(1)

  1、教师课件出示例4

  2、课件出示自学提纲:

(1)例4中的哪些条件和复习中的3相同?问题相同吗?

(2)自己读题,明确已知条件及问题,想:要求小红还剩几朵花,应先求……

(3)尝试说说自己的解题思路并解答。

  3、学生根据提纲尝试解题。

  4、全班汇报

(1)根据学生的回答,归纳出两种思路:

  A、可以从条件出发思考,根据彩带长8m ,每朵花用 m 彩带,可以先算出一共做了多少朵花。

  B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

(2)说说运算顺序,再进行计算。

(二)、教学例4(2)

(1)计算1/5÷(2/3+1/5)×15

  让个别学生说出运算顺序并计算题目的得数。

  教师巡回指点,搜集存在问题。

  教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

  三、当堂测评

  练习九第1、2、3题:

  注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

  楼楼板到地面的高度实际上只有5层楼的高度。

  学生独立完成教师点评,解决疑难。

  学生相互得分,评选优胜小组。

  四、课堂小结

  这节课有什么收获?说一说。

  还有什么不懂的?提出来小组内解决。

  设计意图

  1、 在课初始,我便从复习整数及小数的运算顺序入手,

  重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

  现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

  习加强计算的训练。

  2、 当堂测评题将学生置于提高之处,联系实际生活解决问

  题,让学生体会到数学知识的广泛性和严谨性

  教学后记

六年级数学下册教案 篇2

  教学目标

  1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。

  2.提高学生分析和解答应用题的能力。

  3.渗透对应思想。

  教学重点

  掌握数量关系,明确解题思路。

  教学难点

  会分析数量间的等量关系。

  教学准备

  投影片。

  教学过程

(一)复习

  1.看句子列算式。

  2.复习数量关系。

(1)行程问题中的三量关系式是什么?

(2)相遇问题与行程问题三量关系有什么区别?是什么?

  投影出示:速度和×相遇时间=合走路程

  合走路程÷速度和=相遇时间

  合走路程÷相遇时间=速度和

(3)它们同类量之间有什么关系?

  合走路程=甲走的路程+乙走路程

  速度和=甲的速度+乙的速度

(二)导入新课

  这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)

(三)讲授新课

  例1  两地相距13千米,甲乙二人从两地同时出发,相向而行,经

  1.读题,说出已知、未知条件分别是什么?

  2.分析:

(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?

(相遇问题,相遇时间给的是分数。)

(相遇时间,甲乙二人都行了这么长时间。)

  在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?

(3)请同学们自己选择方法做这道题。

(4)投影反馈各种不同做法,讲算理。

  说每步的算理。

  解③    设乙每小时行x千米。

  为什么这样列方程,根据是什么?

(甲走的路程+乙走的路程=总路程)

  解④   设(略)

  列方程根据是:速度和×相遇时间=距离。

(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?

(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)

(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。

(1)读题分析:

  这道题是一道什么样的应用题?

  分数应用题的解题步骤是什么?

(一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)

(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好

  共修的总和。)

(3)同学们自己画图,列式。(一生板演)

  解①设这段公路长x米。

  等号左边和等号右边各表示什么?

  为什么这样列式?

  以先求两周共修的,然后再求这段公路全长多少千米。)

(4)两种解法的思路有什么不同?

(方程法设全长单位”1“为x,根据分数乘法的意义来列等量关系

  出单位”1“。)

(5)例2与以前学的简单分数应用题的区别是什么?

(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)

  以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。

(三)巩固练习

六年级数学下册教案 篇3

  教学目标:

  1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

  教学重点:

  理解和掌握圆柱的体积计算公式,会求圆柱的体积

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教学用具:

  圆柱体积演示教具。

  教学过程:

  一、复述回顾,导入新课

  以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

  1、说一说:(1)什么叫体积?常用的体积单位有哪些?

(2)长方体、正方体的体积怎样计算?如何用字母表示?

  长方体、正方体的体积=( )×( ) 用字母表示( )

  2、求下面各圆的面积(只说出解题思路,不计算。)

(1)r=1厘米; (2)d=4分米; (3)C=米。

(二)揭示课题

  你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

  二、设问导读

  请仔细阅读课本第8-9页的内容,完成下面问题

(一)以小组合作完成1、2题。

  1、猜一猜 ,圆柱的体积可能等于( )×( )

  2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

(1)圆柱的底面积变成了长方体的( )。

(2)圆柱的高变成了长方体的( )。

(3)圆柱转化成长方体后,体积没变。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为( )

[汇报交流,教师用教具演示讲解2题]

(二)独立完成3、4题。

  3、如果已知课本第8页左上方柱子的底面半径为米,高5米,怎样计算柱子的体积?

  先求底面积,列式计算( )

  再求体积,列式计算( )

  综合算式( )

  4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不计)

【要求:完成之后以小组互查,有争议之处四人大组讨论。】

  教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

  三、自我检测

  1、课本9页试一试

  2、课本9页练一练1题(只列式,不计算)

【要求:完成后小组互查,教师评价】

  四、巩固练习

  课本练一练的2、3、4题

【要求:组长先给组员讲解题思路,然后小组内共同完成】

  教师进行错例分析。

  五、拓展练习

  1、课本练一练的5题

  2、有一条围粮的席子,长米,宽米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

【要求:先组内讨论确定解题思路,再完成】

  六、课堂总结,布置作业

  1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

  2、作业:课本练一练6题

六年级数学下册教案 篇4

  设计说明

  1.注重培养学生学习的自主性。

  引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。

  本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的`解题能力、合作能力及归纳能力得到提高。

  课前准备

  多媒体课件

  教学过程

  ⊙创设情境,提出问题

  1.介绍“物物交换”的背景知识。

  人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。

  2.呈现问题。

  同学们算一算,14个玩具汽车可以换多少本小人书?

  设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  ⊙尝试解决,体会联系

  1.想一想。

  师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。

  2.说一说。

  教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。

  预设

  方法一 14÷4=,×10=35(本)。

  方法二 10÷2=5,14÷2=7,5×7=35(本)。

  方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。

  方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。

  ⊙自主学习,探究新知

  1.提出新的要求。

  师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?

  2.学生尝试列式。

  预设

  方法一 4∶10=14∶x。

  方法二 10∶4=x∶14。

  方法三 14∶4=x∶10。

  方法四 4∶14=10∶x。

  3.交流汇报写出比例的主要依据。

  4.学生独立解比例。

  5.汇报结果。

  预设

  生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。

  生2:我是这样计算的:

  4∶10=14∶x

  解:4x=140

  x=35

  6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。

  (师巡视,适时指导)

  7.验算:把求出的结果代入比例验算一下,看等式是否成立。

  (学生自主验算)

  8.教师小结。

  解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

六年级数学下册教案 篇5

  数的运算(3)

  教学内容:

  义务教育课程标准实验教科书第12册90-91页“整理与反思”和“练习与实践”第8-12题。

  教学目标:

  使学生加深理解和掌握分数、百分数应用题的解题思路和解答方法,进一步提高分析数量关系,运用分数、百分数的知识解决实际问题的能力。

  教学重点、难点:

  分数百分数应用题的解题思路和 解答方法。

  教学

  一、复习解题思路:

  1.选择其中一个条件,编出三道不同的应用题

  (1)松树有30棵 (2)杨树有50棵

  (3)松树的棵树是杨树的3/5

  根据学生回答,相机出示编好的应用题

  (1) 杨树有50棵,松树有30棵,松树的棵树是杨树的几分之几?

  (2)杨树有50棵,松树的棵树是杨树的3/5,松树有几棵?

  (3)松树有30棵,松树的棵树是杨树的3/5,杨树有几棵?

  指名学生口答列式,教师板书,并请学生说说解题思路。

  归纳基本思路:

  解答分数、百分数应用题的关键是确定单位“1”的量。求一个数是另一个数的几分之几?用除法,单位“1”的量作除数。单位“1”的量已知,根据数量关系列式解答。单位“1”的量未知,根据数量关系列方程或除法算式解答。

  二、稍复杂的分数百分数应用题

  1.谁来根据“杨树有50棵,松树有30棵”这两个条件,提出用两步计算的问题?

  引导学生可以提谁比谁多或少几分之几?解题思路是用多或少的量除以单位“1”的量。

  2.出示“杨树有50棵,松树的棵树是杨树的3/5,松树有几棵?”将中间条件改成上一题结论“松树的棵树比杨树少2/5”怎样解答?

  分析:找单位“1”的量是谁?分析数量关系。确定解答方法。

  追问:如果将中间条件改成“杨树的棵树比松树多2/3”呢?

  按刚才方法分析解答。

  3.两题进行对比:为什么上一题可以直接列式计算而第2题要列方程解呢? 三、拓展练习

  1.一根绳子长6米,第一次用去1/4,第二次用去1/4米,还剩下多少米?

  2.一根绳子,第一次用去1/4,第二次用去1/2米,两次共用去这根绳子的1/3,这根绳子长多少米?

  3.一根绳子长6米,用去1/4米后,又用去余下的1/4,又用去了多少米?

  /5千克煤可以发电2/3千瓦时,照这样计算,30千克煤可以发电多少千瓦时?要发电15千瓦时需要多少千克煤?

  5.青山小学五年级有学生76人,占全校总人数的2/15,六年级的人数是全校总人数的4/19,六年级有多少人?

  6.食堂运来一批煤,烧了一部分后,还剩3/8,正好还剩240千克。如果每天烧40千克,这批煤一共能烧多少天?

  7.某机械厂生产一种产品的成本,去年是168元,今年比去年下降了20%。今年这种产品的成本是多少元?

  8.小明从东城到西城,走了全程的%后,距离终点还有千米。东西两城之间的距离是多少千米?

  四、作业指导

  1.教材上第11题:读题理解表中数据意思,认识“峰时”“谷时”时间段意义以及价格变化,分析条件与问题。如何计算安装分时电表前的用电费?如何计算安装分时电表后的用电费?重点指导学生如何计算安装分时电表后的电费计算方法。

  2.教材上第12题:默读题目,看懂题意。分题回答,重点引导学生分析第3题。

  五、独立完成作业:第90-91页上第8、9、10题。

六年级数学下册教案 篇6

  教学方案:

  教学环节教学预设

  一、问题情境

  1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。

  师:同学们,看老师手里拿的是什么?

  生:钥匙。

  师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?

  生:密码锁

  师:谁知道什么地方或物品上经常用密码锁?

  学生可能说出:保险柜、保险箱、旅行箱,等等。

  师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁

  学生可能会说:

  ●我在旅行箱上见过三位数的密码锁。

  ●我在保险柜上见过六位数的密码锁。

  ●有的保险柜上的密码锁是8个数字。

  2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?

  学生可能会说:

  ●不怕丢钥匙。

  ●能够保密,别人不知道密码开不了,也不能仿制。

  ……

  师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。

  板书:数字密码锁

  二、探索密码锁

  1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。

  师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?

  学生写密码,然后交流,得出:

  用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09

  板书:0打头——10个

  师:再用1打头,写一写可以组成几个密码?

  学生写完后交流,得出:

  用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19

  板书:1打头——10个

  师:想一想,用2打头,可以组成几个密码?

  生:10个。

  2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?

  生:分别可以组成10个

  师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?

  生:一共可以组成100个。

  教师板书:10×10=100(个)

  3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?

  教师板书:10×10×10=1000(个)

  师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。

  学生先自己推算,教师巡视,个别指导。

  4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?

  学生可能有以下说法:

  ●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。

  如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)

  同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)

  ●用0、1、2、3、4、5、6、7、、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)

  ●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)

  只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。

  5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?

  生:他得一个一个地试。

  师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。

  学生算完后,交流计算结果。

  1000×10÷60÷60≈(时)

  6.告诉学生六个数字组成的密码有个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有个(板书:个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?

  学生汇报计算结果。

  ×10÷60≈(分),

  ÷60≈277(时),

  277÷24≈11(天)

  师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。

  三、汽车牌照问题

  1.让学生自己读书并解答。交流时,说一说是怎样推算的。

  师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?

  学生试算,教师巡视。

  师:谁来说一说你是怎样想的?怎样计算的?

  生:由四个数字组成的数码有10×10×10×10=(个),在这些数码前面增加一个字母,就可以增加1万个。

  四、电话号码问题

  提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。

  师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。

  同桌讨论,试做。

  师:谁来说一说你是怎样做的?结果是多少?

  学生汇报情况,教师参与。

  学生可能会出现以下结果:

  ●由五个数字组成的数码有10×10×10×10×10=0(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:×10=(个)

  ●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=(个),变成六位后是10×10×10×10×10×9=0(个),增加了8个。

六年级数学下册教案 篇7

  教学目标:

  1、理解“打折”的含义,会解答有关“打折”的实际问题。

  2、明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题。

  3、使学生体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确应用所学知识解决实际问题。

  教学重点:

  在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相等的,并能正确计算。

  教学难点:

  能应用“折扣”这个知识解决生活中的相关问题,体会数学的应用价值。

  教学过程:

  一、创设情境,激发兴趣。

  师:上个周末,我回家看父母,想给他们带礼物。(你们猜老师带了什么礼物回去?)我给他们一人买了一箱牛奶吧!(幻灯出示牛奶)回家前,我逛了县城的两家超市(广源百货和派拉朦百货),结果发现两家超市的标价不同。“广源超市标价:58元”;“派拉朦超市标价:56元”。(你们觉得老师应该去哪家超市买比较好?为什么?)说来也巧,那天广源超市因为店庆搞活动,“牛奶一律八折”;而我有派拉朦超市的会员卡,在里面购物能享受“九折优惠”。(同学们,你们觉得老师到底该“去哪家购买更实惠?”)

  师:我们要解决这个问题,就得先来了解一下“八折”、“九折”表示什么意思。今天我们就一起来探究有关“打折”的知识。(板书课题:折扣)

  [设计意图:采用轻松的谈话方式展开全课的教学,在平淡中显真实。利用学生在日常生活中触手可及的超市购物为例,创造教学氛围,让学生体会到数学知识来源于生活。]

  二、引入新课,感情新知。

  师:同学们,“打折”是什么意思?题中的“八折”、“九折”又是什么意思?

  (听课件中人物对话,了解折扣的所表示的意义。)

  师:小女孩和售货员阿姨的对话,你们听明白了吗?请你们也来说说看。

  课件播放商场打折的有关图片,请学生说一说“七折、五折、八点八折……”分别表示什么意思?

  师:现在就请同学们帮老师算一算:老师去哪家超市买牛奶更实惠?

  广源超市:58×80%=(元)

  派拉朦超市:56×90%=(元)

  师问:通过刚才的计算,谁能总结“现价”、“原价”、“折数”之间有什么样的关系?(现价=原价×折数)

  小结:解答这类应用题的实质就是求一个数的百分之几是多少,关键是要理解打折的含义,把折数化成百分数,再按解百分数应用题的方法解答。

  [设计意图:在学生理解了折扣的含义的基础上,将学生熟悉的生活情景再次引入课堂作为教学切入点,引导学生进行知识迁移,使学生迅速进入学习状态,身临其境地去自主观察、自主分析、自主思考,在理解折扣意义的基础上体会根据原价和折数求现价的问题,实质就是求有关一个数的几分之几是多少的问题。]

  三、应用拓展,深化认识。

  1.情境展示:六一儿童节,儿童用品店对部分商品进行特价酬宾

  书包:原价105元,打7折电动汽车:原价156元,打六折

  笔袋:原价35元,打九折玩具机器人:原价220元,打四五折

  篮球:打六五折,现价52元故事书:原价120元/套,现价96元/套

  书包、笔袋、电动汽车的现价是多少?

  2.玩具机器人比原价便宜多少钱?

  3.你知道故事书打几折吗?

  4.篮球的原价是多少?

  学生逐一独立试算——汇报——说解题思路

  [设计意图:继续创设情境,利用题与题之间的差异,让学生联系“求一个数在百分之几是多少”的知识,学会自主寻求解决“求比原价便宜多少”、“求折数”和“求原价”的方法。培养学生的解题能力,训练学生的发散思维、逆向思维。]

  综合应用,拓展新知。

  师:商家们为了招揽顾客,经常利用“打折”来促销商品,其实商家们还有很多不同促销手段。请看下面这道数学题

  学校要订购100本科普读物。每本原价:3元。现有三家书店,优惠方式各不相同。

  A书店:全部九折

  B书店:40本为一套,优惠价100元/套,不足一套的按原价

  C书店:买四送一

  同学们,想一想,怎样才能花最少的钱购买到这100本科普读物呢?

  学生以小组合作的方式共同讨论,讨论后进行汇报。

  [设计意图:围绕本课教学目标,设计具有开放性的习题,采用小组合作的形式,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养学生自觉应用数学的意识。]

  四、课堂总结。

  师:同学们,通过这节课的学习,你们有什么收获?

  师:今天大家的表现都很出色。其实在生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家都能做个有心人!

  板书

  折扣(打折)

  六折=60%折=55%七折=70%六五折=65%

  现价=原价×折数广源超市:58×80%=(元)

  派拉朦超市:56×90%=(元)

  原价=现价÷折数

  折数=现价÷原价

六年级数学下册教案 篇8

  教学目标:

  1、使学生能够运用运算定律和性质进行正确、合理、灵活的计算。

  2、培养学生的辨析能力和良好审题习惯,提高学生计算能力。

  3、使学生在学习中体会计算的乐趣,不断培养学生学习数学的兴趣。

  教学重点:培养学生审题的良好学习习惯及正确的运用定律性质进行计算的能力...

  教学难点:灵活地运用运算定律和性质进行计算。

  教学过程:

  一、引出新课(约5分钟)

  1、观察3/10、、8、125、、7/10这六个数,你有什么发现?(预设:如学生说出下面的①,则教师就继续说②;如学生直接说②,则教师就不再说①)

  ①这些数是整数、小数和分数。

  ②从计算的角度考虑这些数可以干什么?(凑整)

  2、请你根据这六个数编出三道口算题。

  7/10+3/10=-=8×125=

  3、对三道口算题再加工,请你继续计算。

  3/10+7/10×20=-÷=24÷8×125=

  你想说点什么?(预设:不能为了凑整,而不顾运算顺序,应该按运算顺序做。)

  这些题的.运算顺序是什么?

  二、进行复习(约30分钟)

  1、下面我们进行一次计算比赛,时间三分钟,看谁做得又对又多。可以不按题号顺序,有选择地做。(课前下发习题纸。)

  脱式计算下列各题:

  2、三分钟到!谁来说一说,你选择的是哪些题目?其他同学呢?

  3、思考:你们为什么选择这些题?

  4、我没让你们简算,你们怎么知道这些题能够直接简算的?(预设:需要观察数的特征,符号)简算的依据是什么?(小组讨论)

  5、追问:是不是数字只要能凑整就能简算呢?不能简算,根据什么?能简算根据什么?

  6、现在研究简算的题目,每人手里有一张表,自己先独立填写,填完后再小组交流。第一栏举例,可以是做过的例子,也可再举例。第二栏填简算的依据是什么?第三栏注意(即易错的地儿)是什么?把你们的研究成果,填在表里。(可把几类全研究,也可感兴趣的几个题)(约8分钟)

  简便运算的题目(举例)

  依据(定律或性质用字母表示)

  注意(易错或提醒同学的地方)

  7、学生汇报:(10分钟)

  (1)比如,依据加法、乘法的结合、交换律;乘法分配律;减法性质;商不变的性质;除法性质。师适时板书:定律和性质,并适时师生、生生间进行。

  (2)在学生汇报的同时,说到什么定律或性质时,如学生之间能相互补充最好,否则教师则补充一些学生没有易错的题目,如:

  (3)(意图:分配律的正确运用。②避免分配律迁移到除法中去)。

  (5)×19×17

  (6)3÷÷÷4

  8、订正结果后改正错误(正确的打“√”错误的打“×”)

  三、课堂:(2分钟)

  今天你想说点什么?

  预设:审题重要,观察特征、符号,依据定律、性质,凑整达到简算目的。

  今天的复习对于以前的学习,你有什么新的认识或想法?

六年级数学下册教案【精品8篇】相关文章:

有关苏教版六年级数学下册教案3篇 苏教版六年级数学下册教案表格

六年级数学下册教案【汇编10篇】

苏教版六年级数学下册教案4篇 苏教版六年级下册数学教案版本

小学六年级数学下册教学计划8篇

人教版六年级数学下册第二单元《生活与百分数》教案6篇 小学数学六年级下册生活与百分数教案

小学六年级数学下册教学工作总结3篇(六年级数学下册教学工作总结人教版)

六年级数学下册教学计划13篇 6年级数学下册教学计划

北师大版六年级数学下册的教学计划3篇(最新北师大版六年级下册数学教学计划)

六年级数学下册教学工作计划范例3篇(年六年级下册数学教学工作计划)

西师大六年级数学下册教案范文3篇(最新人教版六年级数学详细的教案)