下面是范文网小编整理的解比例教案7篇(《解比例》教案),以供借鉴。
解比例教案1
教学目标
1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。
2.复习用正比例方法解答应用题。
3.复习用反比例方法解答应用题。
教学重点和难点
判断两种相关联的量成什么比例;确定解答应用题的方法。
教学过程设计
(一)复习数量关系
判断两种相关联的量成不成比例,确定解答应用题的方法。
1.被除数一定,除数和商。
2.一条路,已修的和未修的。
3.梯形的上、下底长度一定,梯形的面积和它的高度。
4.每块砖的面积一定,砖的块数和铺地面积。
5.挖一条水渠,参加的人数和所需要的时间。
6.从甲地到乙地所需的时间和所行走的速度。
7.单位面积一定,播种面积和总产量。
8.时间一定,速度和距离。
9.订阅《北京儿童》的份数和所需钱数。
(二)复习应用题
1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?
第一步,先找对应关系:
8天56台
31天?台
第二步,判断成什么比例?(每天生产的'台数一定,成正比例。)
请你在对应关系的旁边写上正字,决定用正比例方法做。
解 设到月底可生产x台。
x=217
答:照这样速度月底可生产217台。
2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?
第一步,先找对应关系:
20页600本
24页?本
第二步,判断成什么比例?(纸张总页数一定,成反比例。)
请你在对应关系的旁边写上反字,决定用反比例方法做。
解 钉成24页一本的练习本,可钉x本。
24x=20600
x=500
答:如果钉成24页一本的练习本可钉500本。
学生独立地用老师教的分析应用题的思路和方法在本上做两道题。
(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?
(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?
(三)练习解答两步的比例应用题
1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?
黑板上的对应关系变成:
解 设x天读完。
(6+4)x=630
10x=630
x=18
答:18天可以读完。
2.在第1题的基础上,改变问题。
李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?
对应关系:
解 设如果每天多读4页,x天读完。
(6+4)x=630
10x=630
x=18
30-18=12(天)
答:提前12天读完。
(指导学生分析、比较。)
以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)
练习(学生独立分析,做题。)
1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?
解 设甲城到乙城有x千米。
3x=105(3+1.2)
x=147
答:甲城到乙城有147km。
2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?
解 设剩下的x天可以收割完。
90x=554
x=3
答:剩下的3天可以收割完。
(再用间接设的方法做两道题。)
1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?
1642=24x
42-x
2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?
12x=4815
x-48
(四)总结
这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。
课堂教学设计说明
解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。
第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。
第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。
第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。
解比例教案2
【教学内容】
解比例。(教材第42页例2、例3及练习八的习题)。
【教学目标】
1、使学生学会解比例的方法,进一步理解并掌握比例的基本性质。
2、培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。
3、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
【重点难点】
1、使学生掌握解比例的方法,学会解比例。
2、引导学生根据比例的基本性质,将带未知数的比例改写成方程。
【教学准备】
多媒体课件。
【情景导入】
上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
学生在小组中议一议,再汇报。
师:这节课,我们还要继续学习有关比例的知识,就是解比例。
板书课题:解比例。
【新课讲授】
1、教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?
学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。
师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。
2、教学例2。
教师用多媒体课件出示例2。
指名读题,根据题意,描述两个相等的比。
=110或模型高度:实际高度=1∶10。
让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?
教师板书∶320=1∶10,你能试着计算出来吗?
请一名学生板演,其余的学生在练习本上做。
做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。
师:怎样解这个方程?
生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。
小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。
3、教学例3。
解比例:
过程要求:学生独立练习,求出未知项。
同学之间互相交流,发现问题,及时解决。请一位学生上台板演。
解:2、4x=1、5×6
x=
x=3、75
提问:还可以用其他的`知识解比例吗?
学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。
4、总结解比例的方法。
教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?
学生回忆解比例的过程。
教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?
学生:根据比例的基本性质把比例转化成方程。
【课堂作业】
1、完成教材第42页“做一做”第1题。
学生独立练习,教师指名板演,集体订正。
2、完成教材第43~44页第6、7、8、9、10、11、12、13题。
答案:1、x=7、5x=x=0、6
2、第6题:判断小红说得是否正确,可以有不同的方法。方法一:计算1分钟(60秒)心跳的次数,看是不是72次,因为45秒跳54次,1分钟也是60秒就要跳54÷45×60=72次,由此判断小红说得对。方法二:运用比例的知识。计算54∶45与72∶60的比值,看是否相同,相同说明小红说得对。因为这两个比的比值相同都是1、2,说明心跳速度没变。
第7题:组织学生独立练习。指名板演,集体订正。
第8题:组织学生在小组中议一议,说一说解题思路,再动手算一算。学生汇报。
第9题:组织学生阅读题目,理解题意,并独立练习。
第10题:组织学生小组合作完成,指名汇报。
第11题:组织学生在小组中议一议,怎样列比例式,共同完成后相互交流。
第12题:组织学生根据比例的基本性质改写等式,在小组中交流订正。
第13题:组织学生在小组中讨论,交流,相互验证。此题答案不唯一。
【课堂小结】
通过这节课的学习,你在哪些方面得到了提高?
【课后作业】
完成练习册中本课时的练习。
解比例教案3
本资料为WORD文档,请点击下载地址下载全文下载地址 用比例知识解应用题
一、教学内容:
P113例5,练习二十三。
二、教学目标:
使学生进一步认识正反比例应用题的特点,理解并掌握解答正反比例应用题的解题思路和解题方法。
三、教学重点:
使学生学会正确的解答正反比例应用题。
四、教学难点:
进一步培养学生应用知识进行分析、推理的能力,发展学生的思维。
五、教具准备:
小黑板。
六、教学过程:
教学过程自我增减
一、复习:
1、判断比例关系练习
出示一块小黑板,指名学生回答下列数量关系是否成比例,成什么比例?并说明理由。
(1)、汽车行驶的速度一定,行驶的路程与行驶的时间。( )
(2)、把一袋大米平均分装成小袋,每小袋装的数量与装的袋数。( )
(3)、一段公路的长度—定,已经修完的长度与还没有修的长度。( )
(4)、总产量一定.每天的产量与生产的天数。( )
(5)、一本书的单价一定,售出的本数与总价。( )
(6)、长方形的面积一定,它的长与它的宽。( )
2、说出这两种量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行X小时。
二、复习用正比例知识解答应用题
1、教师出示
例5:“修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?”
问:这道题可以怎样解答?题中的数量关系能否成比例?如果成比例,成什么比例?
生:分析、讨论、交流并汇报。
师:巡视并提醒学生,题里问的是修完这条公路还要多少天?而不是求一共用多少天。在设未知数时要怎样设?列方程时应当怎样列?”
(1)、学生动脑想、动手试做。
(2)、学生相互交流并说解题思路。
(3)、教师分析并讲解解题思路。
①设修完这条公路还要X天: ②设修完这条公路一共要X天。
= (直接设未知数) = (间接设未知数)
(4)、分析比较两种不同的解法。
—是在列方程时,要使等式的.每一边都是对应的量相比。如,在第(1)种解法中,等式右边的分母是修完这条公路还要用的天数x。上面的分子就要用还要修的长度来对应是l2-1.5而不是12。
二是在第(2)种解法中,列方程求出的是一共要用多少天,还要减去已经修的3天,才是还要多少天。
2、引导学生用算术解解答。能用几种方法?讲出每种方法的解题思路。
3、与算术方法解答联系对比。
教师概括:“用正比例关系解答的应用题,就是以前我们学过的‘归一问题’。如果题目中没有限定解法。用哪种方法解答都可以。
三、复习用反比例知识解答应用题
例:一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达。如果每小时多航行5千米,多少小时可以到达乙港?
教师引导学生分析题意,学生尝试做题。
四、课堂练习。
1、做练习二十三的第1、2、3题。
做题时先让学生判断题中的数量关系成不成比例?如果成比例,成什么比例?”
教师巡视,个别指导。如果有时间,还可以指名学生说一说解题思路和方法。
五、总结。
谈谈这节课你的收获?
六、布置作业:
练习二十三的第4、5、6、7题。
自我加减
解比例教案4
教学目标:
使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
教学重点:
学会解比例。
教学难点:
掌握解比例的书写格式。
教学过程:
一、铺垫孕伏
1.解下列简易方程,并口述过程。
2.什么叫做比例?比例的基本性质是什么?
3.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?
6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
4.根据比例的基本性质,将下列各比例改写成其它等式。
二、教学新课
1.出示例5
(1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?
(放大前后的相关线段的长度是可以组成比例的)。
(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?
引导学生写出含有未知数的比例式。
告诉学生:“像上面这样求比例中的未知项,叫做解比例。
(3)讨论:怎样解比例?根据是什么?
(4)思考:“根据比例的基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。 “这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)
(5)让学生把解比例的过程完整地写出来。指名板书。
2.总结解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?” (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
“从上面的'过程可以看出,在解比例的过程中哪一步是新知识?”
(根据比例的基本性质把比例变成方程。)
3.补充练习:
利用比例的基本性质,把下列比例改写成含有未知数的等式。(投影出示,由学生独立完成后汇报。
)
三、全课小结:
1.通过本课的学习,你有哪些收获?
2.这节课我们学习了解比例。想一想,解比例的关键是什么?
(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。
解比例教案5
教学目的:
学会解比例的方法,进一步理解和掌握比例的基本性质。教学重点:解比例的方法。教学难点:解比例的方法。
教学过程:
(一)、复习铺垫:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。让我们一起来学习解比例。板书课题:解比例什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。
(二)、学习探索:你会用什么方法呢?(要根据比例的基本性质来解。)
1、教学例2。出示例2:解比例 3:8=15:X。根据比例的基本性质可以把它变成什么形式?教师板书:3X=815。问:这变成了什么?(方程。)这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解:(在3X前加上:解:)问:怎样解这个方程?教师适当补充(根据乘法各部分间的关系,把X看作一个因数,因为一个因数=积另一个因数,可以求出X。)和解题的技巧:板书;X= X=40从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
2、教学例3。出示例3:解比例 = 提问:这个比例与例2有什么不同?(这个比例是分数形式:)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。然后板书:4.5X=90.8问:这个方程你们会解吗?
3、总结解比例的过程。提问:刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)变成方程以后,再怎么做?(根据以前学过的解方程的'方法求解。)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
(三)系列训练:
1、做第3页做一做的第2题。
2、做练习一的第4、5题。
(1)做第4题的第(6)题时,要提醒学生先把带分数化成假分数再做。做完后,选二题让学生说说是怎样求解的。
(2)第5题。
3、学有余力的学生做第8*、9*题和思考题 傲第8*题的第(1)题。教师可以这样引导学生:比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:3:8=15:40 40:15=8:33:15=8:40 40:8=15:3如果把3、40作为内项,有下面这些比例式:15:3=40:8 8:40=3:1515:40=3:8 8:3=40:15
(四)布置作业:完成P5第6、7题。 板书设计:解 比 例例2:解比例3:8=15:X。 例3:解比例 = 解: 3X=815 解:4.5X=90.8X= X=1.6X=40
解比例教案6
教学目的:
1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。
3、培养学生的知识迁移的能力,增强学生的合作意识。
教学重点:使学生掌握解比例的方法,学会解比例。
教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、创设情境,生成问题
1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
2、判断下面每组中的两个比是否能组成比例?为什么?
6:3和8:4 : 和 :
3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)
二、探索交流,解决问题
1、什么叫解比例?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
(1)把未知项设为X。解:设这座模型的高是X米。
(2)根据比例的意义列出比例:X:320=1:10
(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
根据比例的基本性质可以把它变成什么形式?3x=8×15。
这变成了什么?(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。
(4)学生说,教师板书解比例的过程。
教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
3、教学例3。
出示例3:解比例 =
提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)
这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的`基本性质把比例变成方程。)
5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。
三、巩固应用,内化提高
1、P37第7题。
2、P37~38第8~11题。
3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。
4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。
5、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?
四、归纳整理,反思提升
什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?
解比例教案7
教学过程:
一、导人新课
教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)
二、新课
1、自学解比例。
(1)学生自学教材35页的解比例。
(2)学生交流解比例的意义。
(3)教师归纳:(出示课件)
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
出示例2。
(1) 学生读题,理解题目里的.条件和问题。
(2) 学生试着解答此题,一名学生演板。
(3) 师生共评。
(4) 归纳用比例解应用题的方法:
A. 设出题目中要求的未知量为x;
B. 根据比例的意义列出比例;
C. 运用比例的基本性质解比例;
D. 检查、写答语。
(5)试一试:完成练习六第8题。
3、自学例3。
(1)学生独立把例3补充完整。
(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)
教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。
从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
4、总结解比例的过程。
提问:
(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、完成第35页的做一做。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习
做练习六的第7、9、10题。
四、学有余力的学生做第12*、13*题。
傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:
3:8=15:40 40:15=8:3
3:15=8:40 40:8=15:3
如果把3、40作为内项,有下面这些比例式:
15:3=40:8 8:40=3:15
15:40=3:8 8:3=40:15
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。
解比例教案7篇(《解比例》教案)相关文章:
★ 中班语言活动教案:《微笑》5篇(中班语言教案《微笑》详案)
★ 大班语言我们的祖国真大教案4篇(幼儿园大班语言我们的祖国真大示范课)