高中数学数列教案3篇 高中数学数列备课

时间:2024-03-01 11:19:00 教案

  下面是范文网小编收集的高中数学数列教案3篇 高中数学数列备课,以供借鉴。

高中数学数列教案3篇 高中数学数列备课

高中数学数列教案1

  一、概述

  教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式

  二、教学目标分析

  1. 知识目标

  1)

  2) 掌握等比数列的定义 理解等比数列的通项公式及其推导

  2.能力目标

  1)学会通过实例归纳概念

  2)通过学习等比数列的通项公式及其推导学会归纳假设

  3)提高数学建模的能力

  3、情感目标:

  1)充分感受数列是反映现实生活的模型

  2)体会数学是来源于现实生活并应用于现实生活

  3)数学是丰富多彩的而不是枯燥无味的

  三、教学对象及学习需要分析

  1、 教学对象分析:

  1)高中生已经有一定的学习能力,对各方面的`知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

  2)对归纳假设较弱,应加强这方面教学

  2、学习需要分析:

  四. 教学策略选择与设计

  1.课前复习

  1)复习等差数列的概念及通向公式

  2)复习指数函数及其图像和性质

  2.情景导入

高中数学数列教案2

  教学目标

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题.

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

  教学建议

  教材分析

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

  ③对等差数列、等比数列的`综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

高中数学数列教案3

  教学目标

  1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

  (1)理解公式的推导过程,体会转化的思想.

  (2)用方程的思想认识等比数列前项和公式,利用公式知三求一.与通项公式结合知三求二.

  2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

  3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

  教学建议

  教材分析

  (1)知识结构

  先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

  (2)重点、难点分析

  教学重点、难点

  等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

  教学建议

  (1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

  (2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

  (3)等比数列前项和公式的推导的`其他方法可以给出,提高学生学习的兴趣.

  (4)编拟例题时要全面,不要忽略的情况.

  (5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

  (6)补充可以化为等差数列、等比数列的数列求和问题.

  教学设计示例

  课题:等比数列前项和的公式

  教学目标

  (1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

  (2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

  (3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

  教学重点,难点

  教学重点是公式的推导及运用,难点是公式推导的思路.

  教学用具

  幻灯片,课件,电脑.

  教学方法

  引导发现法.

  教学过程

  一、新课引入:

  (问题见教材第129页)提出问题:(幻灯片)

  二、新课讲解:

  记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

  由此对于一般的等比数列,其前项和,如何化简?

  (板书)等比数列前项和公式

  仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

  (板书)③两端同乘以,得④,

  ③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)

  当时,由③可得(不必导出④,但当时设想不到)

  当时,由⑤得.

  于是

  反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

  (板书)例题:求和:.

  设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

  解:,

  两端同乘以,得

  ,

  两式相减得

  于是.

  说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

  公式其它应用问题注意对公比的分类讨论即可.

  三、小结:

  1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用.

  2.用错位相减法求一些数列的前项和.

  四、作业:

  略.

  五、板书设计:

  等比数列前项和公式例题

高中数学数列教案3篇 高中数学数列备课相关文章:

高中森林防火知识教育教案模板3篇(森林防火知识教案及课件)

摘果子中班数学教案3篇 幼儿园中班摘果子数学教案

中班数学教案:摘果子3篇(幼儿园中班数学教案摘果子)

实用的幼儿园中班数学教案模板4篇 幼儿园中班数学优秀教案

关于八年级数学教案13篇(八年级数学教案全套)

精品实用的大班数学教案3篇 大班数学教案大全集

小班数学鸡妈妈和鸡宝宝教案3篇(幼儿园鸡妈妈和鸡宝宝教案)

小班数学教案《1和许多》8篇 比较粗细小班数学教案

数学四年级上册教案12篇(四年级上册教案数学教案)

人教版二年级数学下册教案12篇 人教版二年级下册数学教学进度