长方体和正方体教案12篇(纸质长方体和正方体制作过程)

时间:2024-03-27 09:58:00 教案

  下面是范文网小编收集的长方体和正方体教案12篇(纸质长方体和正方体制作过程),供大家赏析。

长方体和正方体教案12篇(纸质长方体和正方体制作过程)

长方体和正方体教案1

  教学目标:

  1、使学生初步掌握长方体、正方体的表面积的概念;

  2、学生通过观察、操作、探究等合作活动初步掌握长方体和正方体表面积的计算方法;

  3、能较灵活地运用所学知识解答简单的实际问题;

  教学设想:

  一. 创设情境,引入新知

  1.谈话

  师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。

  多媒体:相册

  师:我想将这份特别的礼物也送给学校的领导,你们觉得我这个提议怎么样?我打算先将这份礼物包装一下,那我得准备一张多大的包装纸呢?

  2.引题

  师:你能说说什么是长方体的表面积呢?

  板书:长方体六个面的总面积,叫做它的表面积。

  二. 实践操作,探究方法

  1.提出问题。

  师:长方体的表面积和什么有关呢?

  多媒体:已知这本长方体的相册长是30厘米,宽是28厘米,高是5厘米,包装这样一本相册,至少要多少包装纸?

  师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。

  2. 分组合作进行计算。

  3. 小组讨论并把算式贴在黑板上:

  方法一:30282+3052+2852

  方法二:(3028+305+285)2

  4. 在完整解答过程中要注意什么?注意写解,单位。

  5. 小结:计算长方体的表面积一般有哪几种方法?

  (根据总结,演示多媒体)

  6. 练习:

  师:老师的.难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。

  出示几份学生计算物体的表面积:

  (1) 餐巾纸盒

  问:求餐巾纸盒的表面积有什么用呢?

  (2)大橱

  问:求大橱的表面积有什么用呢?

  7. 出示课题:

  师:今天这节课我们探讨了什么问题呢?

  出示课题:长方体的表面积计算

  8. 这里有个长方体,看看哪个算式是正确的?

  (1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )

  a.272+672+62

  b.(27+26+67)2

  c.27+26+67

  (2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )

  a.(11+13+13)2

  b. 112+134

  c.112+143

  问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。

  师:先说说112+134有什么道理?

  (多媒体演示)

  生:112求的是上下底的面积,因为上下底是正方形,所以其余4个面的面积都相等,就用13先求出一个面,再4求出4各面的总面积

  师:那112+143有什么道理呢?

  生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。

  (3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )

  a. 444

  b. (44+44+44)2

  c. 446

  问:为什么第3个答案也是正确的?

  (多媒体演示)

  9.问:这节课你掌握了哪些本领?

  完整板书:和正方体

  三.巩固练习:

  1.出示:五(1)班要办小小图书馆,需要一只长4分米,宽1.5分米,高2分米的铁箱,现在有一张边长6分米的正方形白铁皮,能做的成吗?

  (小组讨论)

  生:计算的结果是能做成的

  生:66=36(平方分米)

  (41.5+42+21.5)2=34(平方分米)

  师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。

  (教师演示)

  问:不够了,为什么会不够呢?

  问:那怎么办?

  生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。

  师:由于我们所用的材料是白铁皮,所以我们可以用焊接的方法拼,那在怎样的情况我们做不成需要的物品了呢?

  师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。

  四、课后拓展练习:

  多媒体出示:一个火柴盒

  问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?

  师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。

  五、 课堂小结

  师:今天学习了哪些知识?什么是长方体和正方体的表面积?在计算长方体和正方体表面积时要注意些什么呢?

长方体和正方体教案2

  体积和容积

  1.联系学生的实际生活,引导学生通过观察实物、模型或操作学具,认识长方体和正方体。

  长方体的认识

  1.学生在低年级时虽然接触过正方体,但只是直观形象地认识。

  2.多数学生的空间想象力还很薄弱。

  3.部分学生在探究“面的大小关系”和“棱的长短关系”时,可能出现迷茫状况,需要教师在学生探究活动时,不断参与和观察学生活动情况,及时给予恰当的补充。

  长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级时虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识正方体、了解长方体的特征的基础上,进一步探索正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维过程一般又都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学达到事半功倍的效果。

  1.强调知识迁移。

  让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们快速准确地达到学习目标。

  2.引导学生自主探索。

  学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,比较完整地把握长方体和正方体的特征。

  3.老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。

  在学生基本掌握了长方体、正方体各自的.特征后,可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体。把本节的重点内容以图文表结合的形式生动形象地展现出来,使学生印象深刻。

  正方体的特征歌

  正方体,立体型,6面8顶12条棱;

  12条棱,共一组,它们的长度都相等;

  6个面都是正方形,它们的面积都相等。

  长方体和正方体的表面积

  教材第3页的例3和第6页的例4。

  1.通过实际操作,使学生建立长方体和正方体表面积的概念。

  2.使学生知道长方体和正方体表面积的含义。

  3.使学生初步学会计算长方体和正方体的表面积。

  1.建立表面积的概念,初步学会计算长方体和正方体的表面积。

  2.正确建立表面积的概念。

  长方体纸盒,正方体纸盒,。

  长方体和正方体的特征各是什么?(口答)

  标出长方体纸盒和正方体纸盒的6个面,并说出长方体上面、左面的长和宽分别是多少,面积分别是多少。

  1.建立长方体和正方体表面积的概念。

  (1)学生操作。

  将标有上、下、左、右、前、后6个面的正方体沿棱剪开并展开。

  (2)观察。

  请学生观察展开图中的正方形与原来正方体的面之间的关系。

  (3)小结。

  通过观察,引导学生总结出正方体表面积的概念。

  板书:正方体6个面的总面积叫作它的表面积。

  请学生指一指正方体的表面积。

  (4)再次操作。

  请学生将标有上、下、左、右、前、后6个面的长方体沿棱剪开并展开。

  (5)思考。

  展开后的图形与原来长方体的面之间的关系是什么?

  观察展开后的图形,你会想到什么?

  引导学生明确长方体中面积相等的面是相对的面。

  长方体的每个面的长和宽各是多少?

  通过思考,学生们会发现每个面的长和宽与长方体的长、宽、高的关系。

  小结:长方体的表面积是6个面的面积之和。长方体每个面的长和宽与长方体的长、宽、高有着密切的联系。

  (6)反馈。

  出示下面的图形。

  根据长方体的长、宽、高分别说出长方形各个面的长和宽。

  长方体的表面积是由哪些面组成的?

  师生共同总结长方体和正方体表面积的含义。

  2.学习长方体表面积的计算方法。

  出示例4。

  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用硬纸板多少平方厘米?

  (1)读题,分析题意。

  (2)学生试着解答。

  教师巡视,帮助指导。

  (3)聆听学生的解题思路。

  求至少要用硬纸板多少平方厘米,就是求长方体几个面面积的和?你准备怎样计算?首先要找出每个面的长和宽。根据长方体的长、宽、高可以计算出每个面的面积,把6个面的面积合在一起就是表面积了。

  教师指名板演解题过程。

  学生甲:分别求出3组相对的面的面积,再相加。

  6×4×2+5×4×2+6×5×2

  =48+40+60

  =148(c2)

  学生乙:分别求出每组相对的面中一个面的面积,相加后再乘2。

  (6×4+5×4+6×5)×2

  =(24+20+30)×2

  =74×2

  =148(c2)

  学生丙:分别求出6个面的面积,再相加。

  6×5+6×5+5×4+5×4+6×4+6×4

  =30+30+20+20+24+24

  =148(c2)

  (4)自主分析比较,发现哪种解法简便?

  通过分析比较,发现学生乙的方法最简便。

  (5)讨论。

  计算长方体表面积最关键的是什么?(根据长方体的长、宽、高,找出每个面的长和宽)

  3.试一试。

  板书:做一个棱长3分米的正方体纸盒,至少要用硬纸板多少平方分米?

  (1)学生独立完成。

  (2)集体订正。

  教师指名说出怎样算简便。

  教师根据学生的叙述板书:3×3×6=54(平方分米)

  1.下面哪个图形沿虚线折叠后能围成长方体?先想一想,再折一折。

  ① ②

  2.求下面长方体和正方体的表面积。

  一个长方体的长是宽的2倍,宽是高的3倍,棱长总和为80厘米。求它的表面积。

  课堂作业新设计

  1. ①不能 ②能

  2.(8×3+8×5+3×5)×2=158(c2) 7×7×6=294(c2)

  思维训练

  如果把高看作“1”,那么宽就是“3”,长是“3×2=6”。因为长方体共有4条长、4条宽、4条高,而其棱长总和为80厘米,所以“1份”为80÷ =2(厘米),长是2×6=12(厘米),宽是2×3=6(厘米),高是2×1=2(厘米),表面积是(12×6+12×2+6×2)×2=216(平方厘米)。

  教材习题

  教材第3页练一练

  1. 2.第1个和第3个能。

  练习一

  1. 左图:长7c 宽4c 高3c 中图:长6d 宽4d 高5d

  右图:长20 宽8 高8

  2. (1)右图是正方体,左图是长方体。 (2)正方体的棱长是5c,有6个面完全相同。

  (3)长方体的长是5c,宽是4c,高是5c;有2个面是相同的正方形,其余4个面完全相同。

  3. (1)长方形 长5c,宽4c (2)长方形 长5c,宽3.5c (3)长方形 长4c,宽3.5c

  (4)长方体的下面与上面完全相同,后面与前面完全相同,左面与右面完全相同。

  4. 左图:长3厘米,宽2厘米,高2厘米。

  中图:长、宽、高都是3厘米,即棱长是3厘米的正方体。

  右图:长5厘米,宽2厘米,高2厘米。

  6. 第一列的两个展开图和第二列第一个和第三个展开图,沿虚线折叠后都可以围成长方体。

  7.

  8. 10×4=40(c2) 7×3=21(2) 4×4=16(c2)

  9. (1)a+b+c 4(a+b+c) (2)12a 72

  动手做

  分析:因为长方体或正方体都是由6个面围成的,所以无论是围成长方体或者是正方体都至少需要6张硬纸片。

  方法:把各类硬纸片依次命名为A、B、C、D、E。

  围长方体:

  选法一:选4张A 2张B 选法二:选4张A 2张E 选法三:选4张C 2张E

  选法四:选4张D 2张B 选法五:选2张A 2张C 2张D

  围正方体:

  选法一:选6张B 选法二:选6张E

  教材第6页试一试

  3×3×6=54(平方分米)

  教材第6页练一练

  5×4×2+5×2.5×2+2.5×4×2=85(c2) 4×4×6=96(c2)

  长方体和正方体的表面积

  正方体(长方体)6个面的总面积叫作它的表面积。

  做一个棱长3分米的正方体纸盒,至少要用多少平方分米的硬纸板?

  3×3×6=54(平方分米)

长方体和正方体教案3

  教学目标:

  1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。

  2、在操作中认识长、宽、高和正方体的棱长。

  3、培养学生的空间想象能力和空间观念。

  教学重难点:

  通过实物认识长、正方体,了解长(正)方体的特征。

  教学过程:

  一、复习提问

  请同学们回忆一下,我们已经学过哪些平面图形? 长方形和正方形各有什么特征?这两种平面图形之间有什么关系? 我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)

  二、探究新知

  (一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的.生活中你还见过哪些物体的形状是长方体的?学生举例。 我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。

  (二)认识长方体。

  1.教师拿出火柴盒的模型,说明面、棱和顶点。

  2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。

  面 棱 顶点 长方体 数量 形状 大小 数量 长度 数量 位置

  (1)探究完成实验报告。

  (2)汇报讨论结果。

  (3)认识长方体的长、宽、高。

  4.引导学生 指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。

  5.练习: 要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。

  (教具)

  (三)认识正方体

  1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。 独立观察提纲:

  (1)数一数,正方体有几个面?每个面是什么形状?相对的面的形状、大小有什么特点?

  (2)摸一摸,正方体有多少条棱?它们的长度相等吗?

  (3)找一找,正方体有几个顶点? 独立填写实验操作报告: 面 棱 顶点 正方体 数量 形状 大小 数量 长度 数量 位置 1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征 2.比较长方体和正方体有何异同? 相同点:6个面、12条棱、8个顶点。 不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。 3.引导学生认识长、正方体的关系:

  (四)新课小结

  这结课我们学习了什么内容?你还有什么问题?

  三、看书质疑(略)

  四、巩固练习

  (1)长方体和正方体都有6个面,12条棱,8个顶点。( )

  (2)长方体的六个面都是长方形。( )

  (3)正方体是由六个正方形组成的图形。( )

  (4)正方体是特殊的长方体。( )

长方体和正方体教案4

  第三单元

  长方体和正方体体积

  第一课时:

  教学目标:

  1、使同学理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

  2、使同学知道计量一个物体的体积有多大,要看它包括多少个体积单位。

  教学重点:

  1、建立体积概念。

  2、认识体积单位。

  教学难点:

  建立体积概念。

  教学用具:学具袋。

  教学过程:

  一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

  二、新授:

  1、体积的意义。

  (1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

  (2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

  〔3〕、启发同学概括:物体所占空间的大小叫做物体的体积。(板书)

  上面三个物体,哪个体积最大?哪个体积最小?

  (4)、比较:用同学手中的文具比。谁的体积大?谁的体积小?

  师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一局部。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自身的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一局部,而地球上的山、川、河流、一切建筑物、人等占地球的一局部。

  2、体积单位:

  (1)、讲:丈量长度要用长度单位,丈量面积要用面积单位,丈量体积要用体积单位。(板书)

  认识体积单位:

  常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

  ( 2)、认识立方厘米:

  出示:棱长是1厘米的正方体,量一量它的棱长是多少?

  说明:它的体积是1立方厘米。

  谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

  (3)、认识立方分米: (方法同立方厘米)

  粉笔盒的体积接近于1立方分米。

  (4)、认识立方米:

  ①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

  ②认识1立方米的空间大小。

  1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

  小结:

  常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

  体积单位的用途是什么?

  (5)、练一练:选择恰当的单位:

  橡皮的.体积用(

  ),火车的体积用(

  ),书包的体积用(

  )。

  (6)、比一比:

  到现在为止,我们都了学哪些丈量单位?(板书)

  长度、面积、体积三种单位的区别:

  (7)、练习:

  ①说一说:丈量篮球场的大小用(

  )单位。

  丈量学校旗杆的高度用(

  )单位

  丈量一只木箱的体积要用(

  )单位。

  ②、 一个正方体的棱长是1(

  ),外表积是(

  ),体积是(

  )。(你想怎样填?)

  ③、判断:一只长方体纸箱,外表积是52平方分米,体积是24立方分米,它的外表积大。(

  )

  3、体积初步认识:

  ①决定体积大小,是看它含有体积单位的个数。

  A 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

  B、说出下面物体的体积(3个体积单位,4个体积单位,)

  C 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

  D、小结:怎样知道一个长方体的体积是多少?

  同一个体积数,可以摆出不同的形状。

  ②动手摆一摆:

  请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

  三、总结:

  这节课我们学习了体积的意义和体积单位。你有什么收获?

  四、作业:

  课后小结:

长方体和正方体教案5

  教学目标:

  结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。

  知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。

  3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。

  教学重点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学难点

  1、长方体、正方体表面积的意义和计算方法。

  2、确定长方体每一个面的长和宽。

  教学媒体

  教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

  学具:长方体、正方体纸盒、剪刀。

  教学过程

  一、复习准备。

  (一)口答填空。

  1.长方体有( )个面,一般都是( ),相对的面的( )相等;

  2.正方体有( )个面,它们都是( ),正方形各面的( )相等;

  3.这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

  4.这是一个( ),它的棱长是( )厘米,它的'棱长之和是( )厘米。

  (二)说一说长方体和正方体的区别?

  教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)

  二、学习新课。

  (一)长方体和正方体表面积的意义。

  1.教师提问:什么叫做面积?

  长方体有几个面?正方体有几个面?

  (用手按前、后,上、下,左、右的顺序摸一遍)

  2.教师明确:这六个面的总面积叫做它的表面积。

  3.学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。

  4.教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

  (二)长方体表面积的计算方法

  1.学生归纳:

  上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

  前后两个面大小相等,它是由长方体的长和高作为长和宽的;

  左右两个面大小相等,它是由长方体的高和宽作为长和宽的。

  2.教师提问:想一想,长方体的表面积如何计算?(学生讨论)

  老师板书:

  上下面:长×宽×2

  前后面:长×高×2

  左右面:高×宽×2

  3.练习解答。

  做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

长方体和正方体教案6

  教学目标

  1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

  2、能根据有关体积、容积的计算方法,解答实际问题。

  教学重点、难点

  重难点:

  能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

  教学过程

  一、体积、容积单位之间的化聚、转换练习。

  458立方厘米=()立方分米

  20.6立方分米=()立方米

  7060毫升=()升=()立方分米

  130毫升=()立方厘米=()立方分米

  800升=()立方分米=()立方米

  0.02立方米=()立方分米=()升

  二、解决实际问题的应用练习。

  1、一个长方体的汽油桶,底面积是18平方分米,高是5分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

  2、一节货车车厢,从里面量长13米,宽2.7米,装的'煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)

  3、在一只底面是边长60厘米的正方形,高是80厘米的长方体纸箱内,装棱长是2分米的立方体纸盒。这只纸箱最多可装这样的纸盒多少个?

  4、一个长方体蓄水池,长9.6米,宽4.2米,深2.5米。这个蓄水池占地多少平方米?它最多可蓄水多少立方米?

  5、一个长方体水箱,从里面量长80厘米,宽40厘米,高60厘米,箱内水面离箱口10厘米。箱内共有水多少升?如果把这些水倒入另一个底面边长40厘米的长方体水箱内,这时水高多少厘米?

  (1)学生独立完成

  (2)说说解题思路

  第一题:18×5=90(立方分米)90(立方分米)=90升

  90×0.74=66.6(千克)

  第二题:13×2.7×1.2=42.12(立方米)

  42.12×1.3≈55(吨)

  第三题:60×60×80=288000(立方厘米)

  2分米=20厘米

  20×20×20=8000(立方厘米)288000÷8000=36(个)

  第四题:9.6×4.2=40.32(平方米)

  9.6×4.2×2.5=100.8(立方米)

  第五题:80×40×(60-10)=160000(立方厘米)

  160000(立方厘米)=160升

  160000÷(40×40)=100(厘米)

  (3)重点分析第5题

  水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

  三、思考题

  用一张长50厘米,宽40厘米的长方形铁皮,做一个深10厘米的无盖长方体铁皮盒。要使这个长芳褪铁皮盒的容积最大,可以怎样做?

  1、学生独立研究

  2、小组讨论

  3、教师评议

长方体和正方体教案7

  一、说教材

  长方体和正方体是小学数学五年级上册的内容,在学习本节课之前,学生已经学习了很多的平面图形的,比如长方形,正方形、三角形、平行四边形等。本节课的学习即与之前学习过的平面图形有着密切联系,但又有着本质的不同。密切的联系在于研究方法、研究的切入点有相同的地方。本质的区别在于长方体和正方体是学生在小学阶段中第一次全面、深刻、系统的学习立体空间图形的开始。由平面图形扩展到立体图形是学生空间观念的一次飞跃。学习长方体和正方体有助于学生空间观念的形成,这也为学生今后学习其他立体图形以及立体图形表面积、体积的计算等打下坚实的基础。因此本节课的地位显得至关重要!

  二,教学目标

  知识与能力:借助具体的实物和模型,掌握长方体和正方体各部分的名称、特征,以及长方体和正方体的联系。

  过程和方法:通过观察思考、动手操作,培养学生的空间观念,发展学生的立体思维。

  情感态度和价值观:在总结、归纳长方体和正方体特征的过程中获得积极的学习体验。

  三,教学重难点

  理解和掌握长方体和正方体,面和棱的特征

  四,学情分析

  在小学低年级阶段,学生已经初步认识了长方体和正方体,并且在生活中也会经常碰到长方体和正方体。虽然学生没有系统的学习过长方体和正方体,但在平面图形中很多研究方法学生已经掌握,比如研究平面图形,我们一般从点、边、角等方面来进行研究。

  五,教法、学法

  主要采用教师引导,学生动手实践、自主探索、合作交流的方法。

  六,教学准备

  多媒体课件、长方体正方体实物模型、研究单

  七,教学过程

  (一)情境导入

  上课开始,我们先出示一幅商场一角的情境图,让学生仔细观察,都发现了哪些形状的物体?能不能用我们以前学习过的数学知识、数学语言来描述一下?

  学生一般能够正确识别长方体和正方体。这是我们继续抛出一个问题?生活中你在哪些地方还见到过长方体和正方体?我想学生的回答应该是五花八门,比如魔方、快递包装盒、牛奶盒、铅笔盒、橡皮等等,或许学生描述不是那么精确,比有的如铅笔盒,它并不是一个平平的面,而是一个曲面,但是我们这时不要着急否定学生,因为学生已经从以往的平面图形走到了现实中的立体图形,这是一个大的进步,我们的应当予以肯定。对于那些不精确的描述,我们会在最后进行讨论,让学生根据本节课学习到的知识进行判断。

  (二)讲授新知

  我们知道,数学来源于生活,同样的道理,长方体和正方体也是来源于生活中的实际物体,根据学生认知发展的规律,我们应当从实物中提炼出模型,因此我们可以研究长方体和正方体的模型,当然理想条件下每个同学最好都有一份不同的长方体和正方体的模型。第一步就让学生直观感知长方体和正方体。让学生动手摸一摸、闭上眼睛想一想,今天我们学习的长方体和正方体与我们以前学习过的平面图形到底有什么不同?通过直观的感知,学生的回答或许不是那么精确,比如,平面图形有一个面,立体图形有好多个面;再比如平面图形是画在纸上的,而立体图形是现实生活中的等。我想这足以可以说明学生已经开始进行了立体图形的思考。

  这时进一步追问,假如让你来描述一下长方体和正方体,你觉得应该从哪些方面来介绍?老师可以引导学生回顾以前学习过的平面图形,帮助学生梳理,研究平面图形时,我们可以从顶点、边、角等几方面来进行研究。同样的道理在认识长方体,正方体等立体图形时我们也可以选取几个研究点来进行探讨,比如面,棱(即面与面相交的线段叫做棱),顶点(即三条棱相交的点叫做顶点)当然,这些名称的认识可以是学生课前预习,也可以作为老师的新知讲授。当学生了解长方体和正方体各部分名称后,可以设计一个环节,让同桌两个相互说一说,加以巩固各部分的名称。

  在掌握了各部分名称后,我们可以先研究长方体、也可以先正方体;当然也可以放在一起进行研究,本节课我采用先研究长方体再将研究方法迁移到正方体的'模式:

  长方体的特征,在前面我们已经确定了可以从顶点,面以及棱三个方面来进行探究。

  顶点的数量很好数,是8个顶点,当然在数的过程中要注意引导学生有顺序的来数。研究的重点在于面和棱。这时我想完全可以把问题抛给学生进行小组讨论。在小组讨论开始之前,我们要给学生提供几个问题:第一,长方体有几个面,面与面之间有没有什么特点?你是怎么验证的?第二,长方体有几条棱,棱与棱之间有没有什么特点?你又是通过什么方法来验证的?带着这两个问题同学们进行小组合作。并完成研究表格。

  小讨论结束,学生在进行汇报交流的时候,教师应当引导学生,在去数面的个数的时候,怎么才能做到不重复、不遗漏。我们可以上下、前后、左右来数。一共有6个面。对于面的特点,我们可以从面的位置、面的形状、面的大小也就是面积三个方面来描述,最终得出结论:长方体有6个面,每个面都是长方形、相对面的大小、形状完全相同。(当然对于每个面都是长方形这个说法在后面的练习中会进行特殊的论述)

  在去研究长方体棱的时候可以让学生模仿刚才研究面的过程:比如,长方体一共有几条棱,怎样数才能做到不重复不遗漏?让学生展开充分的交流、讨论。有的学生会想到一个顶点对应3条棱,长方体一共有8个顶点,共计24条棱,但是在数的时候所有的棱都重复计算了一遍,最后要减半,所以长方体一共有12条棱。还有的同学可能会想到按照棱的长度去数,一共有三组,每组有四条棱长度相等,共计12条棱。还有的同学可能是按照空间位置来去数,这时可以让这位同学到讲台上用不同颜色的粉笔来进行标注,通过空间位置的划分,可以分为3组,每组有4条,共计12条棱。每种方法都可以,但是我们要鼓励学生运用第3种方法,因为第三种方法学生是真正站到立体空间的角度去思考问题,要予以肯定。这时,我们可以设计一个环节,同桌两个彼此不重复、不遗漏的数一数各自长方体的棱并说一说每组棱有什么特点。最后我们得出结论:长方体有12条棱,可以分为3组,每组相对的4条棱长度相等。

  在学生掌握了长方体的顶点、面、棱的数量和特征后,引导学生观察长方体中一个顶点对应几条棱,学生很清楚的知道:一个顶点对应3条棱。在数学中,我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。并且向学生介绍,一般来讲,我们把水平方向的较长

  《长方体和正方体的认识》说课稿二的棱叫做长,把水平方向较短的棱叫做宽,把垂直方向的棱叫做高。讲授完长宽高后,可以让学生到讲台上来说一说自己长方体模型的长宽高。让学生知道,长方体的长宽高并不是固定的,而是随着摆放的位置进行变化的。

  在研究正方体特征时,我们可以让学生自己根据刚才研究长方体的方法去研究正方体。完成研究表格,并对比一下,长方体和正方体有什么相同之处和不同之处。通过学生自己动手操作、动脑思考得出结论:正方体也有8个顶点、6个面,12条棱。但是正方体的6个面大小、形状完全相同。并且正方体的12条棱长度也完全相同。这正是长方体与正方体的的不同之处。本环节的设计重点在于研究方法的迁移,以及对长方体和正方体的相同之处和不同之处进行比较。

  最后我们要让学生明白长方体和正方体之间的包含关系:在平面图形中,我们学习过正方形是特殊的长方形,只不过正方形的长和宽相等,我们称之为边长。这里的正方体是不是特殊的长方体呢?抛出这个问题让学生进行思考?其实,正方体就是一种特殊的长方体,只不过正方体的长宽高都相等而已,我们把它称为棱长。本环节的设计目的是让学生明白,在集合范围内,正方体是一种特殊的长方体。二者是一种包含的关系。

  到此本节课的新授内容以基本结束,根据练习的层次性,我设计了以下几个练习。

  最后,让学生思考两个问题:

  1,生活中的铅笔盒、冰箱等是不是标准的长方体

  2,是不是所有的长方体的面都是长方形。

  这两个问题留作学生课下思考。

  八、板书设计

  略

长方体和正方体教案8

  教学内容

  教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。

  教学目标

  1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。

  2.过程与方法:会运用公式正确计算长方体和正方体的体积。

  3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。

  教具学具

  学生准备12个体积是1cm3的小正方体木块。教师准备多媒体课件,及表格一和表格二。

  教学重点

  1.理解长方体和正方体的体积公式的推导过程。

  2.会计算长方体和正方体的体积。

  教学难点

  长方体、正方体的体积计算的推导过程。

  教学过程

  一、问题引入

  1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?

  师:你是怎样想的?

  教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。

  2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?

  生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的.体积是多少。

  生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。

  生3:量出长方体的长、宽、高,用长×宽×高。

  教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。

  (板书课题:长方体和正方体的体积计算)

  [简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。然后让学生想办法怎样求出一个长方体的体积。激发了学生的求知欲,并自然过渡到新课的学习。]

  二、问题探索

  1.探索长方体的体积计算方法。

  (1)4人小组合作"搭积木"。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,并填写表一:

  每排个数排数层数1cm3正方体的个数体积(cm3)

  长方体一

  长方体二

  长方体三

  思考:

  ①长方体每排个数、排数、层数分别相当于长方体的什么?

  ②长方体的体积怎样计算?

  (2)学生在合作交流中探讨长方体和正方体体积的计算规律。

  生:每排个数就是长方体长所含厘米数,排数就是宽所含厘米数,层数就是高所含的厘米数。长方体的体积=每排个数×排数×层数,或长方体的体积=长×宽×高,或长方体的体积=底面积×高。

  学生相互,鼓励学生自主探索。

  (3)用实例验证规律。

  师:刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?

  学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的体积是否等于它的长、宽、高的乘积,请每小组(2人小组)同学一边实验一边填写表二:

  长(cm)宽(cm)高(cm)体积(cm3)

  第一个长方体

  第二个长方体

  让学生说说自己的发现。(板书:长方体的体积=长×宽×高)

  师:看来我们的发现是正确的,请给自己一颗探索星。

  (4)用字母公式表示长方体的体积计算方法。

  让学生观察板书和长方体的立体图,想一想:如果用V表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?

  (板书:V=a×b×h)

  师:闭上眼睛想一想,求一个长方体的体积必须具备什么条件?

  (5)反馈练习。

  师(课件出示例2):怎样计算电脑包装箱的体积?

  学生审题,独立完成。

  [简评:在探索长方体的体积的计算中,设置"操作→感知规律;验证→认识规律;练习→应用规律"几个层次,符合学生掌握知识的特点,使本环节的重难点得以突破。课堂气氛民主和谐,学生从同伴那里不断优化自己的思考方法。]

  2.自学正方体的体积计算方法

  (1)正方体的体积又怎样计算呢?猜猜看。

  (2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。

  (3)说说正方体的体积计算方法,字母表示的方法(V=a·a·a或a3)。要计算正方体的体积,必须知道什么条件?

  (4)反馈练习:

  口答:这个正方体的体积是多少?

  三、课堂活动

  量一量、算一算。

  (分组测量、并计算)

  四、全课

  说说本课学习中你的收获。

  五、作业

  练习十二第2、3题。

  [简评:整堂课从学生提出假设,小组合作探索、交流得出长方体的体积计算公式,然后用长方体的体积计算公式推导正方体的体积计算方法,既体现了自主学习,又沟通了长方体和正方体体积的关系。解决实际问题的设计,让学生量一量,算一算,培养了学生动手实践和解决生活实际问题的能力。教师大胆地进行开放式教学,让学生经历探索的过程,让学生在合作中讨论交流,呈现了学生思维的多样性和层次性,发展了学生的思维,体现了教师主导与学生主体的教学观念。

长方体和正方体教案9

  一、操作引疑:

  师:土豆块是不是长方体?同学们,你们已预习过课本,现在把你们手中的土豆块切成一个长方体。想一想:①切一刀,摸一摸,有什么感觉?

  生1:平的,叫做“面”。

  师:②再切一刀呢?

  生2:两个面相交的边,叫做“棱”。

  师:③再切一刀呢?

  生3:出现三个面,三条棱,三条棱相交的点,叫做“顶点”。

  师:再把土豆切成一个长方体,比一比谁切得最像。

  二、研究长方体究竟有什么特征:

  学习小组合作研究:

  出示的研究题1-----3题,并把研究的数据填入表格中。

  研究题1:

  长方体和正方体的面、棱、顶点各有多少?每个面分别是什么形状?

  集体交流:

  师:你是怎样数“面”、“棱”的?哪种数法比较好?

  生:

  面:前后、左右、上下(2+2+2或2×3)

  棱:有三组不同方向“棱”(4+4+4或4×3)

  师:观察本组同学的长方体土豆块,每个面都是长方形,有特殊情况吗?

  生:我们小组土豆块,有两个相对面是正方形。

  最后教师总结,并引导学生体验有序思考的优点。

  研究题2:

  你觉得长方体的棱和面还有什么特征?用尺子量一量,看看自己的想法是否正确,并填入表格中。

  学生动手操作,小组讨论交流,共同探究。

  师:请每个小组把研究结果汇报,或有什么问题要质疑?

  生1:我们小组发现相对的两个面形状一样,面积相等。

  生2:请问你们小组是怎样知道?

  生3:我们小组是动手量相邻两条边知道的。

  生4:我们小组是动手算出它的面积知道的。

  生5:我们小组是动手剪开比一比知道的。

  师:每个小组都能想出好办法,如果老师想做这个(实物演示)长方体框架共需要多少长的铁丝?大家有什么方法来解决吗?

  生6:只要量出一个顶点引出三条不同的方向棱的长度。再乘以4,就得铁丝长。

  生7:量出红颜色棱的长度,再乘以4;接着量蓝颜色的.棱长,再乘以4;最后量黄颜色的棱长,再乘以4;把三次积加起来就是铁丝长。

  研究题3:

  正方体有什么特征?为什么说正方体是特殊长方体?把数据填入表格中。

  师:长方体和正方体有什么相同点和不同点?

  生1:我们小组研究认为正方体和长方体的面、棱和顶点的数目是一样。

  生2:我们小组研究发现正方体每条棱长都相等这点与长方体不同。

  生3:我们小组归纳出:把正方体说成是长、宽、高都相等的长方体,所以它是一种特殊长方体。

  三、实践应用:

  1、请同学们用橡皮泥和小棒制作一个长方体(或正方体)框架。老师为大家准备了不同长度的小棒(出示数据),请小组成员先交流,商量需要哪种长度的小棒,各多少根?再派成员上来领取。

  小组同学动手操作,并展示、交流。

  师:同学们的“作品”真漂亮!老师想请教一下,你们小组刚才用了几根小棒?使用小棒拼成框架什么特别的要求?另外用橡皮泥捏了几个点呢?

  2、你们能像教师这样,给长方体框架穿上“衣服”吗(出示一个用纸做面,包好了的长方体)想想看,应用剪刀剪出怎样的纸片?再比较它们每个面的异同。

  小组同学操作、汇报、交流。

  [评析]

  通过这节课的教学活动给我的启发和反思是:

  1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。

  充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的,培养了学生的学习能力。

  2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。

  本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。

  3、让学生经历“学数学”的过程,其核心问题是“学会思考”

  让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。

  苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题

  用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。

长方体和正方体教案10

  教学目标:

  1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;

  2.培养学生实际操作能力,同时发展他们的空间观念;

  3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

  教学重点:

  探索长方体体积的计算方法。

  教学难点:

  理解长方体和正方体体积公式的推导过程.

  教具准备:

  课件,若干个1立方厘米小正方块

  学具准备:

  1立方厘米的正方体16块

  教学过程:

  一、激情导入

  1、复习引入

  师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。

  2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的学习目标。

  3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。

  二、民主导学

  师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。大家请看大屏幕,这个长方体的体积是多少?

  (学情欲设)

  生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。

  生2、可以量一量。

  生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。

  老师认为这个提议不错,你们认为呢?

  师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。

  任务呈现:

  用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:

  出示表格。学生四人一小组,每组一张表格。

  长

  (厘米)

  宽

  (厘米)

  高

  (厘米)

  小正方体的'数量

  长方体的体积

  师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。

  自主学习

  学生活动,师巡视。

  展示交流

  师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?

  学生黑板前展示表格,并做详细汇报。

  引导学生观察表格,

  师:观察表格中的数据,从中你能发现什么呢?

  师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。

  任务2、继续验证

  课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。

  1、长4厘米,宽1厘米,高1厘米。

  2、长4厘米、宽3厘米、高1厘米。

  3、长4厘米、宽3厘米、高2厘米

  师:这是三个不同的长方体,根据刚才的发现你能说出它们的体积吗?生回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米

  师:那究竟对不对呢?让我们再来摆一摆。

  学生小组讨论,动手操作,指名一生上台操作。师巡视。

  师:和我们之前的猜想一样吗?

  师:根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?

  V=abh

  师:那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1

  课件出示:

  师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。

  师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

  学生汇报:

  因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  课件出示正方体,出示公式。

  师:正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。课件出示

  正方体的体积:V=a

  师:写的时候,3要写在a的右上角,并且要写的小一些。

  小训练:完成例2,在练习本上完成,集体订正。

  三、巩固应用

  1、口答题

  2、判断题

  3、解答题

  四、拓展延伸

  师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看

  师:这个算式表示什么意思呢?

  出示:

  品名:正方体收纳凳

  尺寸:30×30×30

  材质:涤纶+PP不织布+纤维板

  颜色:黑白

  师:你能看懂这个说明书吗?

  师:如果要往这里放一个长40cm宽20cm高10cm的玩具箱,能放入到收纳凳里吗?

  师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。

  五、课堂小结

  师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

长方体和正方体教案11

  教学内容:九年义务教育六年制小学教科书数学第十册第25页至26页和练习六第1~4题。

  教学目的:使同学获得长方体、正方体的外表积的概念,在理解概念的基础上初步学会长方体外表积的计算方法;发展同学的空间观念,培养同学的概括、推理能力。

  教具准备:教师准备长方体、正方体外表积展开的教具,同学每人准备长方体、正方体纸盒和火柴盒各1个。

  教学过程:

  一、复习和准备练习

  1.练习六第1题。指出各长方体的长、宽和高各是多少。

  2.指出以上各长方体前面的长和宽,并口算出前面的面积。

  3.练习六第2题第(1)题。把同学分成三组,每组同学指出一个长方体右侧面的长和宽,然后在练习本上计算出它的面积,再指名说出算式一起订正。

  4.练习六第2题第(2)题。把同学分成三组,每组同学指出一个长方体上面的长和宽,然后在练习本上计算出它的面积,最后指名说出算式并进行订正。

  二、新课

  1.教学长方体、正方体的外表积的概念。

  (1)引导同学观察自身准备好的长方体纸盒,并依照要求操作:分别用“上”、“下”、“左”、“右”、“前”、“后”标明六个面。然后回答下面问题:

  长方体有几个面?每个面是什么形状?

  让同学分别沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体外表积教具展开贴在黑板上。)

  长方体有哪些面是完全相同的长方形?它们的面积怎么样?那么有几组面积相等的长方形?

  (2)引导同学观察自身准备好的正方体纸盒,并按要求操作:分别用“上”、“下”、“左”、“右”、“前”、“后”标明六个面。然后回答问题:

  正方体有几个面?每个面是什么形状?正方体有几组面积相等的正方形?

  让同学分别沿着正方体的棱剪开,再展平。(教师将正方体外表积教具展开贴在黑板上。)

  (3)教师指着两个展开图说明:长方体或正方体6个面的面积总和叫做它的外表积。(板书课题:长方体和正方体的外表积)

  2.教学例1:长方体外表积的计算方法。

  说明:在日常生活和生产中,经常遇到要计算长方体的外表积。

  (1)教师在黑板上出示例1的题和图。

  (2)指定同学读题,复述题目的已知条件和问题。然后提问:要求“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算什么?(就是要计算这个长方体的外表积。)

  (3)让同学将刚才展开的长方体再折回原状,并依照例题的数字在自身的长方体上注明长6厘米、宽5厘米、高4厘米。提问:长方体的外表积中有哪几组面积相等的长方形?

  (4)让同学打开课本看第26页例1,边观察长方体边考虑,然后在课本上填写。

  (5)订正计算结果。先依次订正上下、前后、左右每个面的长、宽和面积是多少,再订正长方体的外表积。着重提问:每一步连乘表示什么?同学边回答,教师边板书如下:

  6 × 5 × 2 + 6 × 4 × 2 + 5 × 4 × 2

  上、下两面 前、后两面 左、右两面

  面积的和 面积的和 面积的和

  (6)提问:这道题还可以怎样列式解答?自身做做看。独立解答后,集体讨论进行订正。着重讨论为什么先算3个面的面积和,再乘2。同学回答,教师板书:

  (6×5+6×4+5×4)×2

  上面 前面 左面

  面积 面积 面积

  (7)引导同学比较后提问:这两种计算方法有什么不同?(第一种方法是先分别算出上、下面的面积和,前、后面的面积和,以和左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘上2。)

  提问:这两种方法有什么联系吗?

  引导同学说出:根据乘法分配律可以把第一个式子改变成第二个式子。第二个式子更简便些。

  (8)小结:

  从上面的计算中看出,计算长方体外表积时最关键的是找出什么?(引导同学说出:要正确找出3组面中每个面的长和宽,就容易算出每个面的面积和长方体的外表积。)

  (9)完成例1下面的“做一做”。

  先要求同学独立列出算式,一起订正,提问:“先找哪组面?再找哪一组面?最后找哪一组面?”然后再让同学解答出来。同学完成书上“做一做”的题目后,还可以丈量自带的火柴盒的长、宽和高,算出它的外表积。

  三、本课小结

  提问:

  “今天我们学习了什么新知识?”

  “什么是长方体和正方体的外表积?”

  “正确计算长方体外表积的关键是什么?”

  四、安排作业

  1.阅读课本第25~26页。

  2.在练习本上做练习六第3题和第4题。

  (一)教学要求

  1.使同学掌握长方体和正方体的特征,知道外表积和体积(容积)的含义。

  2.认识常用的体积单位(立方米、立方分米、立方厘米)和容积单位(升、毫升),掌握这些单位间的进率和名数变换。

  3.使同学在理解的基础上掌握长方体和正方体的体积计算公式,学会计算长方体和正方体的外表积和体积,并能运用所学的知识解决一些简单的实际问题。

  (二)教材说明

  同学在低年级初步认识了一些简单的立体几何图形,已经能够识别出长方体、正方体、圆柱和球等形体。在前面几册教材中还学习了一些平面几何图形的特征,以和它们的周长和面积的计算。本单元教材是在此基础上教学的。这是同学比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是同学发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使同学对自身周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。另外,长方体和正方体体积的计算,也是同学形成体积的概念、掌握体积的计量单位和计算各种几何形体体积的基础。

  这一单元共分成三节:长方体和正方体的认识,长方体和正方体的外表积,长方体和正方体的体积。在长方体和正方体的体积一节中,还介绍了容积的概念。

  教材首先引导同学观察墨水瓶盒、罐头盒、排球等实物,说明这些物体的形状都是立体图形,而以前学过的长方形、正方形、三角形等图形都是平面图形,使同学从直观上初步了解立体图形与平面图形的不同。接着,要求同学在已有知识的基础上,指出在这些立体图形中,哪些是长方体,并拿一个长方体来仔细观察,笼统概括出长方体的特征。然后,再让同学通过观察一些正方体实物,笼统概括出正方体的特征。最后,把长方体和正方体进行比较,说明正方体是长、宽、高都相等的特殊的长方体,并用集合图表示它们之间的关系,渗透了集合思想。为了使同学较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要同学自身多动手,除了让同学通过看一看、摸一摸、数一数、量一量,来认识长方体和正方体的特征以外,还要求同学动手用硬纸做一个长方体和一个正方体,这样既巩固了所学的知识,也为后面学习长方体和正方体的外表积和体积做了准备。

  长方体和正方体的外表积是在同学认识并掌握了长方体和正方体的特征的基础上教学的。计算长方体和正方体的外表积在生活中有广泛的应用,通过学习这局部内容,还可以加深同学对长方体和正方体特征的理解,发展他们的空间观念。教材先通过让同学操作,把一个长方体或正方体纸盒的6个面展开,协助同学认识外表积的概念。这样可以把外表积的概念与刚刚建立起来的长方体和正方体的特征很好地联系起来,为下面学习计算外表积做好准备。接着,通过例1和例2,教学长方体和正方体外表积的计算方法。

  关于长方体和正方体外表积的计算,教材中没有分别总结计算公式。这样做有利于更好地发展同学的空间观念,而且有助于同学根据实际情况去想计算的方法。由于在实际生活中,有时不需要求出长方体或正方体6个面的总面积。例如粉刷房间的墙壁,做不带盖的长方体铁皮桶等,就要具体考虑需要计算哪几个面的面积。教材中通过例3,协助同学考虑怎样解决这些实际问题,同时加强了这方面的练习,防止同学生搬硬套计算方法。

  体积对同学来说是一个新概念。在长方体和正方体的体积一节里,教材先通过把石头放入有水的玻璃杯里的实验,说明物体占有空间。然后又通过观察火柴盒、工具箱和水泥板等物体,说明每个物体所占空间的大小不同,进而引出物体的体积概念。接着,说明为了计量物体体积的大小,必需要规定计量体积的单位,并通过实物或教具让同学认识1立方厘米、1立方分米和1立方米的实际大小。在此基础上,教学长方体和正方体体积的计算方法。这里,教材仍然强调了让同学自身动手操作,通过用方木块拼摆长方体,认识长方体的体积与它的长、宽、高的关系,引导同学总结出长方体体积的计算公式。接着,再类推出正方体体积的计算公式。最后,把长方体和正方体体积的计算公式统一成“底面积×高”。这是所有柱体体积的计算公式,也为以后学习计算圆柱和圆锥的体积打下基础。

  在教学长方体和正方体体积的计算方法以后,教材利用正方体体积的计算公式,引导同学推导出体积单位间的进率。这样布置既分散了难点,又便于同学理解和掌握体积单位间的进率,同时也为以后实际计算时灵活处置计量单位做了准备。接着,教材又介绍了容积的概念,以和容积单位与体积单位的关系。

  为了防止同学把体积和外表积的概念混淆起来,教材中加强了这局部知识的对比练习。教材第44页先引导同学把这些知识进行复习,然后通过例7让同学独立练习,以加强同学对体积和外表积的理解和区别。

  在本单元的教材中,还出现了用字母表示体积的计算公式,并在习题中布置了少量用简易方程解答的有关体积的题目,以复习巩固以前学过的一些代数初步知识。

  教材说明

  这局部内容是在同学过去初步认识长方体和正方体的基础上,进一步教学长方体和正方体的特征。教材先列举了一些常见的物体,如墨水瓶盒、罐头盒、魔方玩具等,说明这些物体的形状都是立体图形,与以前学过的一些平面图形不同,再让同学根据以前对长方体的初步认识,指出哪个物体的形状是长方体。这样有利于同学分清长方形和长方体的概念,便于同学逐步形成有关立体图形的空间观念。然后,教材通过例1,让同学拿一个长方体的纸盒来细致地观察长方体的面、棱和顶点,引导同学通过看一看、摸一摸、量一量、数一数,逐步笼统概括出长方体的特征,指出长方体是由6个长方形围成的立体图形(特殊情况有两个相对的面是正方形),其中相对的面完全相同,相对的棱长度相等。这里只说明长方体的特征,不是下定义。在这基础上,教材又通过例2,用细木条(或铁丝)做棱,用橡皮泥粘成一个长方体框架,使同学能够比较清楚地看到长方体的12条棱之间的关系,让同学进一步进行笼统概括,从而引出长方体的长、宽、高的概念。接着,教材又通过魔方玩具和医用橡皮膏盒等形状引出正方体的概念,并让同学拿一个正方体的纸盒来观察,笼统概括出正方体的特征,指出正方体是由6个完全相同的正方形围成的立体图形。最后,让同学比较长方体和正方体的相同点和不同点,说明正方体是一种特殊的长方体,并用集合图表示它们的关系。

  “做一做”中的习题是让同学通过动手制作模型,加深对长方体和正方体的特征的认识,同时也为以后学习外表积做了初步的准备。

  在练习五中,首先通过让同学观察和丈量实物的长、宽、高,看长方体和正方体的直观图,来加深同学对长方体和正方体的认识,发展空间观念。例如,第1、2题和第5、6题。接着,又把一个长方体和它的每个面联系起来,让同学弄清它们之间的关系。例如,第3题和第7题要求同学说出图中长方体每个面(长方形)的长和宽各是多少。这就要求同学能把每个面的长和宽与长方体的长、宽、高对应起来,一方面加深对长方体的认识,发展空间观念,另一方面也为计算外表积做些准备。第8题是在前面各题的基础上再加深认识,并算一算向上的面的面积。

  教学建议

  1.这局部内容可以布置2课时进行教学。完成练习五中的习题。

  2.教学长方体和正方体的认识以前,可以先让同学回忆以前学过哪些几何图形,接着拿出一些不同形状的实物,如纸盒、罐头盒等,让同学识别,说一说这些物体是什么形状的。然后向同学说明,以前学习的长方形、平行四边形、三角形等都是平面上的图形,叫做平面图形,而现在看到的这些物体的形状都是立体图形,它们都占有一定的空间。由于同学以前已经初步认识过长方体和正方体,这时可以让同学在出示的实物中,找出哪些物体的形状是长方体和正方体。

  3.教学长方体的认识时,由于同学对立体图形还不够熟悉,应该加强直观演示和操作。最好让每个同学都拿一个长方体纸盒或其他长方体的实物,引导同学观察,找出长方体的.特征。

  依照教材上的例1,让每个同学都拿出一个长方体纸盒来观察。先引导同学认识长方体的面。可以让同学拿着长方体实物,依照前、后、上、下、左、右的顺序,先数出一共有几个面。再引导同学观察每个面的形状,说出每个面是什么形状。然后让同学比较各个面,提问:“有没有形状大小都相同的面?”“哪些面是完全相同的?”逐步引导同学笼统概括出“长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面形状大小完全相同。”

  接着引导同学认识长方体的棱。可以让同学用手摸一摸长方体两个面相交的地方,说明这叫做长方体的棱。还可以让同学用直尺放在棱上,说明棱是直的,因此棱是线段,是可以度量的。再让同学数一数长方体一共有多少条棱。在同学数的时候,可以启发同学想一想,怎样数才干做到不重复、不遗漏。引导同学把棱分成三组。教学前,教师可以把教具中每组互相平行的棱各自用同一种颜色标出来,让同学数一数每组中各有几条棱,再算出长方体一共有多少条棱。然后让同学用尺量一量每一组中棱的长度,说说发现了什么。最后,引导同学得出“长方体有12条棱,可以分成3组,每组互相平行的4条棱的长度相等,也可以简单地说相对的棱的长度相等”。

  认识长方体的顶点时,可以让同学用手摸一摸长方体每三条棱相交的地方,说明这叫做长方体的顶点。再数一数长方体一共有多少个顶点。数顶点时,也应提醒同学用一只手拿住长方体不动,依照一定的顺序数。

  最后,引导同学概括出长方体的特征。说明长方体是由6个长方形围成的立体图形(特殊情况有两个相对的面是正方形)。它有12条棱,8个顶点。在一个长方体中,相对的面完全相同,相对的棱长度相等。

  接着,教师可以依照教材上的例2,用木条(或铁丝)做一个长方体框架,让同学观察,以突出长方体中12条棱的关系。先引导同学观察,一个长方体中的12条棱可以怎样分组,每一组棱的长度有什么关系。然后再引导同学观察,长方体中相交于一个顶点的棱有几条,这几条棱的长度怎样?相交于其他顶点的棱各有几条,它们的长度怎样?由于有三组互相平行的棱,每组棱的长度相等,我们可以取相交于一个顶点的3条棱作代表,把相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高。说明长方体的形状和大小是由它的长、宽、高决定的,知道了一个长方体的长、宽、高,就可以知道这个长方体是什么样子。为了协助同学正确理解长方体的长、宽、高,可以让同学把长方体横放、竖放、再侧放,根据长方体摆放的不同情况,让同学说出它的长、宽、高。这样既可以防止同学死记硬背什么叫做长、宽、高,又可以发展同学的空间观念。教学长、宽、高的概念以后,教师还可以出示一些长方体的直观图,使同学学会看图,指出图中长方体的长、宽、高,为以后进一步学习做准备。在这之后,可以让同学完成第21页上的“做一做”,并指导同学做练习五中的1~3题。

  4.教学正方体的认识时,可以参照长方体的教学,由观察实物开始,逐步笼统概括出正方体的特征。最后应注意向同学说明,由于正方体的所有的棱的长度都相等,所以它的长、宽、高都叫做棱长。在这以后,可以指导同学完成第22页的“做一做”,并进行一些练习。

  5.教学长方体和正方体的比较时,可以依照面、棱、顶点的次序,引导同学找出它们的相同点和不同点。教学时,可以由同学边讨论

长方体和正方体教案12

  [教材简析]

  长方体和正方体是最基本的立体图形,从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。学生在低年级虽然接触过长方体和正方体,但只是直观形象的认识,本节课就是要在学生初步认识长方体和正方体的基础上,引导学生进一步探索长方体和正方体的特征,为继续学习长方体和正方体的表面积和体积奠定基础。

  [教学目标]

  1.学生通过观察、操作等活动认识长方体和正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征,理解它们之间的关系。

  2.学生在活动中进一步积累探索经验,增强空间观念,发展数学思考。

  3.学生体会立体图形学习与实际生活的联系,感受其价值,增强数学学习的兴趣和学好数学的自信心。

  [教学重点]探索长方体特征。

  [教学难点]理解长方体直观图;理解长方体和正方体之间关系。

  [教学准备]每生带一个长方体实物;课件。

  [教学过程]

  一、创设情境,激发兴趣

  1.请观察日常生活中常见的、典型的物体(课件呈现),提问:哪些物体的形状是长方体?

  2.说说生活中还有哪些物体的形状是长方体?

  [说明:通过观察激活学生已有的关于长方体的直观经验,通过交流不断积累长方体表象。]

  二、自主探究、合作交流

  1.观察物体,理解直观图。

  (1)师激疑:从不同角度观察一个长方体,最多能同时看到几个面?

  生试着从不同角度观察自己带来的长方体实物。

  汇报交流,达成共识:不论从哪个角度观察,最多只能同时看到3个面。

  相机呈现长方体直观图(动画演示:先画出能够看到的面,再勾出不能看到的面)。

  (2)认识面、棱、顶点。

  观察直观图,说说从一个角度看到了哪些面?哪些面不能看到?

  结合长方体直观图,师向学生介绍:两个面相交的线叫做棱,三条棱相交的点叫做顶点。(课件同时在图中作出标注)

  结合直观图中棱和顶点,说说它们分别是由哪些面(或棱)在此相交得到的?

  在小组里互相摸一摸,指一指长方体物体的面、棱和顶点。

  [说明:让学生在观察物体的基础上,借助多媒体演示,理解长方体的直观图,认识它的面、棱和顶点,这样既遵循了他们的认识规律,又有利于培养他们的空间观念。]

  2.探究长方体特征。

  (1) 分小组研究长方体特征,填写长方体的认识研究报告单。

  长方体的认识研究报告单

  面

  棱

  顶点

  研究小组:

  看一看,量一量,比一比,并在小组里交流。(课件出示研究提纲)

  ①长方体每个面都是什么形状?哪些面完全相同?

  ②长方体有几条棱?哪些棱的长度相等?

  ③长方体有几个顶点?

  (2)展示成果,交流方法。

  师提问:

  ①面怎样数不重复不遗漏?你们是如何发现长方体相对的面完全相同?

  ②棱怎样数不重复不遗漏?你们又是如何发现相对的棱的长度相等的?

  ③顶点怎样数不重复不遗漏?

  学生交流方法,同时配课件演示。

  引导小结:长方体有6个面,12条棱,8个顶点,每个面都是长方形,相对面完全相同(也可能有两个相对面是正方形),相对的棱长度相等。

  (3)认识长、宽、高

  师:长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(课件演示)

  拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。

  完成练一练和练习三第1题。

  [说明:学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试,让学生带着问题去观察操作,目标明确,任务具体。交流反馈时老师又一次提醒学生是怎样数的、如何发现的,目的是把握一切机会教学生学会学习方法。]

  3.探究正方体特征。

  课件演示长方体渐渐变成正方体,认真观察,发现了什么?

  (师述:长、宽、高都相等的长方体叫正方体(也叫做立方体)由于长、宽、高都相等所以称棱长)

  根据刚才研究的方法,请你们小组讨论研究出正方体的特征,填写正方体的认识研究报告单。

  展示成果,交流方法。

  归纳小结:正方体的6个面是完全相同的正方形,正方体的.12条棱长度相等。

  [说明:让学生把学习长方体的特征的学习方法迁移到学习正方体的特征上来,使他们又对又快地达到学习目标。]

  4.比较长、正方体的特征,说说它们的相同点和不同点。

  老师引导学生按照面、棱、顶点的次序,引导学生找出它们的相同点和不同点并整理成表格。

  形体

  相同点

  不同点

  面

  棱

  顶点

  面的形状

  面积

  棱长

  长方体

  6个

  12条

  8个

  6个面都是长方形(特殊情况有两个相对的面是正方形)

  相对的面的面积相等

  每一组互相平行的四条棱的长度相等

  正方体

  6个

  12条

  8个

  6个面都是正方形

  6个面的面积都相等

  12条棱的长度都相等

  练习三第3题。

  独立完成每小题,再交流反馈。

  [说明:学生已经基本掌握了长方体、正方体各自的特征,所以可以引导学生按照面、棱、顶点的顺序,通过讨论交流,来总结和概括它们的相同点和不同点,最后整理成表格,使学生明确正方体是特殊的长方体,渗透子集思想。表格的设计把本节的重点内容以图文表结合的形式生动形象直观地展现出来,给人铭刻记忆,融会贯通。]

  三、巩固运用 拓展创新

  1.练习三第2题。

  借助直观图,根据图中标注的数据先同桌有条理地指一指、说一说每个面的长和宽,说说相关面之间的关系再独立把有关面的形状和长、宽有条理地写下来。

  2.练习三第4题。

  (1)先判断课本中摆出的几个图形中分别是长方体还是正方体,再同桌互相指一指每个图形中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

  (2)每个学生用棱长1厘米的正方体摆一个长方体或正方体,在小组内互相说说摆出的长方体(正方体)的长、宽、高(棱长)。

  3.练习三第5题。

  [说明:练习内容丰富,多样,既加强了基础知识的训练,又提高学生的思维能力。]

  四、梳理知识 反思总结

  你认为本节课,你最大的收获是什么?

  [总说明]

  1.现代学习心理学认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自己已有的知识和经验主动地加以建构。所以在本节课中,从学生的已有经验出发,让学生亲身经历数学知识的再发现、再创造过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师只是起着组织者、引导者、合作者的作用。

  2.把教学数学知识(特征及其相互关系)、数学方法(观察、数、发现的方法)、数学思想(子集思想)三者有机地结合起来,使学生既学数学知识,又学数学方法和数学思想。

长方体和正方体教案12篇(纸质长方体和正方体制作过程)相关文章:

《长方体和正方体的表面积》教案7篇 长方体和正方体的表面积教学随笔

《长方体和正方体的认识》教案12篇 长方体和正方体的认识教学实录

长方体和正方体的体积教案12篇 长方体和正方体的认识教案

《正方体》大班教案12篇 幼儿大班正方体教案

大班教案:正方体12篇(正方体大班数学教案)

《正方体》大班教案12篇 大班正方体活动反思

长方体和正方体的表面积教案7篇(正方体表面积计算教案)

认识长方体教案12篇 五年级认识长方体的教案

大班数学认识正方体与长方体教案3篇(幼儿园大班数学认识正方体和长方体教案)

《长方体和正方体的表面积》教学反思12篇 长方体和正方体的表面积教学反思面积公式