初一数学下册教案6篇

时间:2024-04-10 10:05:00 教案

  下面是范文网小编整理的初一数学下册教案6篇,以供参考。

初一数学下册教案6篇

初一数学下册教案1

  一、教学目标:

  1、探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质;

  2、能够按要求作出简单平面图形经过轴对称后的图形;

  3、鼓励学生利用轴对称的性质尝试解决一些实际问题,经历观察、分析、作图等过程,进一步发展空间观念,培养学生分析问题的能力和有条理的语言表达能力;

  二、教学重点:

  1、轴对称的基本性质,利用轴对称的性质解决实际问题;

  2、进一步发展学生合作交流的能力和数学表达能力。

  三、教学难点:

  利用轴对称的性质解决实际问题。

  四、教学过程:

  (一)课前准备

  1、实验操作:将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平.

  2、合作交流:(1)图中,两个“14”有什么关系?

  (2)在扎字的过程中,点E与点E/重合,点F与点F/重合.设折痕所在直线为l,连接点E与点E/的'线段与l有什么关系?点F与点F/呢?

  (3)线段AB与A/B/有什么关系?CD与C/D/呢?

  (4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.

  在图中,沿对称轴对折后,点A与A/重合,称点A关于对称轴的对应点是点A/,类似的,线段AB关于对称轴的对应线段是线段A/B/,∠1关于对称轴的对应角是∠2。

  利用比较直观的方法使学生比较清晰地观察到每一组对应点与折痕之间的位置关系以及对应角、对应线段之间的大小关系。

  (二)情境引入

  学生可以根据折叠过程中的某些元素的重合说明理由,进一步验证上一个活动得到的结论。

  轴对称的性质:

  1、对应点所连的线段被对称轴垂直平分;

  2、对应线段相等,对应角相等.

  (三)实战演习

  利用轴对称设计图案:

  教师可以先鼓励学生想象完整图案的形状,然后鼓励学生根据轴对称的性质探索画出图案另一半的方法。

  (四)巩固提高

  (五)学以致用

  (六)反思总结

  1、小结:

  (1)通过本节课的学习,你收获了什么?

  (2)本节课中,你还有什么疑问?

  2、作业习题5.2

  板书:

  1、轴对称的性质: (1)对应点所连的线段被对称轴垂直平分;

  (2)对应线段相等,对应角相等。

  2、利用轴对称设计图案:

  已知对称轴l和一个点A,要画出点A关于l的对应点A/。

  过点A作对称轴l的垂线,垂足为B,延长AB至A/,使得BA/=AB.点A/就是点A关于直线l的对应点。

  3、练习

  4、小结作业

初一数学下册教案2

  3.4 用尺规作三角形

  (3)预习作业:

  2、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.

  (1)若BC在DE的同侧(如图①)且AD=CE,求证: .

  (2)若BC在DE的两侧(如图②)其他条件不变,问:(1)中的结论是否仍然成立?若是请予证明,若不是请说明理由.

  3、(1)如图(1),已知AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.

  (2)若将过O点的直线旋转至图(2)、(3)的情况时,其他条件不变,那么图(1)中∠1与∠2的关系还成立吗?请说明理由.

  4、已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的'直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.

  如图1,当CD OA于D,CE OB于E,易证:CD=CE

  当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.

初一数学下册教案3

  一、教学目标设计

  [知识与技能目标]

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  [过程与方法目标]

  限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

  [情感态度与价值观]

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

  二、教材解读

  借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

  让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和

  字母,多鼓励学生通过观察、归纳、验证。

  教学过程设计与分析

  一、情境导入

  [课件展示,激趣感知]

  博物馆、农场到学校与学校到博物馆农场的距离的`关系。

  [媒体展示课件,认知生活中的有些问题]

  不考虑相反意义,只考虑具体数值。

  [创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

  实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

  师生互动

  [提出问题,引发讨论]

  1、引导学生得出绝对值定义及表示方法。

  2、同桌之间互相举例。

  [展示:启发学生交流了解绝对值]

  归纳绝对值概念,教师指出表示方法。

  [师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

  同桌之间举例,效果良好,体现了“自主——协作”学习。

  阅读课文,互动探索

  求解各数的绝对值后讨论

  1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

  2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

  阅读课文:从各数的绝对值归纳绝对值的代数意义。

  [阅读课文:“想一想]提出问题,引起学生的思考。

  [阅读课文:“议一议]

  学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

  [趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

  学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

  积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

  3、做一做

  [激趣探知]

  教师出示过关题目

  学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

  师生归纳两页数比较大小的两种方法。

  [探索用绝对值比较两负数的方法]

  体验概念的形式过程

  旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

  从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

  巩固练习

  [绝对值比较两负数大小的运用]

  情境:比较下列每组数的大小。

  [媒体展示,出示习题]:

  运用绝对值比较负数大小。

  [变成训练,巩固反馈]

  继续对绝对值比较负数大小进行巩固练习。

  由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

  知识延伸

  [学生探究,教师点拨]

  [媒体展示]

  绝对值定义,代数意义及内在涵义的的灵活应用。

  [知识延伸,目标升华]

  充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

  学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

初一数学下册教案4

  教学目标:

  1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

  2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

  3、了解完全平方公式的几何背景,培养学生的数形结合意识。

  4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

  教学重点:

  1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

  2、会用完全平方公式进行运算。

  教学难点:

  会用完全平方公式进行运算

  教学方法:

  探索讨论、归纳总结。

  教学过程:

  一、回顾与思考

  活动内容:复习已学过的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

  右边是两数的平方差。

  2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

  二、情境引入

  活动内容:提出问题:

  一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

  用不同的形式表示实验田的总面积,并进行比较。

  三、初识完全平方公式

  活动内容:

  1、通过多项式的`乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引导学生利用几何图形来验证两数差的完全平方公式。

  3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

  结构特点:左边是二项式(两数和(差))的平方;

  右边是两数的平方和加上(减去)这两数乘积的两倍。

  语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

  四、再识完全平方公式

  活动内容:例1用完全平方公式计算:

  (1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

  五、巩固练习:

  1、下列各式中哪些可以运用完全平方公式计算。

  1、6完全平方公式:

  一、学习目标

  1、会推导完全平方公式,并能运用公式进行简单的计算。

  2、了解完全平方公式的几何背景

  二、学习重点:会用完全平方公式进行运算。

  三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。

  四、学习设计

  (一)预习准备

  (1)预习书p23—26

  (2)思考:和的平方等于平方的和吗?

  1、6《完全平方公式》习题

  1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

  (1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。

  《1、6完全平方公式》课时练习

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根据完全平方公式与幂的乘方法则可完成此题。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根据完全平方公式与积的乘方法则可完成此题。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根据完全平方公式可完成此题。

初一数学下册教案5

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的`性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初一数学下册教案6

  教学目标

  1、通过实际操作,了解什么叫做轴对称变换。

  2、如何作出一个图形关于一条直线的轴对称图形。

  教学重点

  1、轴对称变换的定义。

  2、能够按要求作出简单平面图形经过轴对称后的图形。

  教学难点

  1、作出简单平面图形关于直线的轴对称图形。

  2、利用轴对称进行一些图案设计。

  教学过程

  Ⅰ、设置情境,引入新课

  在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题。在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样。

  将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形。

  准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕。再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的

  这节课我们就是来作简单平面图形经过轴对称后的图形。

  Ⅱ、导入新课

  由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分。

  类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。

  对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方

  向和位置的变化在图案设计中的奇妙用途。

  下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下。

  结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

  连结任意一对对应点的线段被对称轴垂直平分。

  我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换。

  成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到。一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的

  取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的.纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边。回答下列问题。

  (1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由。

  (2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?

  (3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做。

  注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些。

  Ⅲ、随堂练习

  (一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2)。

  (1)猜一猜,将纸打开后,你会得到怎样的图形?

  (2)这个图形有几条对称轴?

  (3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

  答案:(1)轴对称图形。

  (2)这个图形至少有3条对称轴。

  (3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形。

  (二)回顾本节课内容,然后小结。

  Ⅳ、课时小结

  本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案。在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案。

初一数学下册教案6篇相关文章:

圆数学教案12篇

小学数学教案经典5篇

大班数学生活中的数字教案12篇

大班数学优质课生活中的数字教案3篇

大班数学活动教案《生活中的数字》3篇

中班数学教案12篇

大班数学有趣的重叠教案3篇

六年级数学分数除法教案12篇

数学五年级下册北师大版教学计划11篇

精品小学数学教案模板4篇