分数乘法教学反思11篇(分数乘法解决问题教学反思)

时间:2023-10-15 22:12:00 教学反思

  下面是范文网小编收集的分数乘法教学反思11篇(分数乘法解决问题教学反思),供大家参考。

分数乘法教学反思11篇(分数乘法解决问题教学反思)

分数乘法教学反思1

  在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:

  1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。

  2、出示新课,让学生找单位“1”,画线段图分析。

  引到学生想:画图时,先画什么,再画什么?怎样画?

  3、根据线段图,写关系式。

  4、根据关系式列算式,并解答。

  学生根据自己的想法,列出了两种不同的数量关系式,根据不同的`关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。

  本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。

分数乘法教学反思2

  分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:

  例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756

  (1)长江流域可供开发的矿产资源有多少种?

  (2)全国的矿产资源有多少种?

  其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。

  然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。

  首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。

  其次,本例中的第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的'矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。

  最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。

  综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:

  例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?

  (2)果园里有60果李树,李树是桃树的,李树有多少棵?

  这样的设计我认为有这样几个好处:

  1、单位“1”不变,都是桃树。

  2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。

  通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗

分数乘法教学反思3

  在教学这部分内容的时候我更加深刻感受到“求一个数的几分之几“用乘法这部分内容需要补充的必要性。同时有以下想法。

  1、画线段图现在就应该加强。

  学生画线段图的技能相对较弱。在学生这部分内容的时候我加强了学生画线段图的练习。效果不错。同时为后面更加复杂的内容的学习打好基础。

  2、加强对表示两者关系的分数的理解。

  虽然学生能够结合线段图理解分数的含义。我觉得还是不够的 ,应该让学生多说,说一说分数所表示的含义究竟是什么,也可以用手“比划“的方法。充分说一说是把谁平均分成多少份,谁相当于其中的多少份。让学生对于单位1有充分的认识。

  3、继续巩固求一个数的几分之几用乘法。

  让学生结合具体的问题多来说一说为什么用乘法。在理解题意的基础上说一说求谁,就是求谁的几分之几,用乘法计算。说的练习是一个内化的.过程。我觉得是非常非常重要的环节。

  4、抓住练习题中有代表性的问题加强巩固。

  练习四中第4题是存在两个单位1的分数乘法应用题。在解决这个的问题的时候,不能图快。要让班里每一位同学都彻底明白这个问题中存在两个单位1.如何分步进行计算。

分数乘法教学反思4

  分数乘法应用题教学反思“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:

  一、复习铺垫,为新课做好准备

  本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:

  (背投出示)

  1、列式解答

  (1)20的1/5是多少?(2)6的3/4是多少?

  求一个数的几分之几是多少,用乘法来计算。

  2、找单位“1”,说关系式

  (1)、男生占总人数的2/3。

  (2)、红花占总数的5/6。

  (3)、一本书,读了3/4。

  (4)、一条路,还剩下1/4没有修。

  为本节课的新知识做好了准备。

  二、创设严谨的思维训练,提高学生的思维和分析能力。

  小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。

  三、注重孩子的'全体参与,让孩子在动手操作中理解题意。

  解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。

  这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。

分数乘法教学反思5

  《分数乘分数》的教学重点是巩固理解分数乘法的好处,探索分数乘分数的计算算理与法则。

  在教学实践中继续采用“数形结合”的数学方法,帮忙学生达成以上两个教学目标。对于这天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法好处的理解还不够深刻,因此在整个的教学过程分为三个层次:

  一、引导学生透过用图形表示分数的好处,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法好处,感知分数乘分数的计算过程。

  二、以1/5*1/4为例,让学生先解释算式的好处,然后用图形表示这个好处,最后再根据图形表示出算式的计算过程,这样做的目的是透过“以形论数”和“以数表形”的.过程让学生巩固分数乘法的好处,体会分数乘分数的计算过程。

  三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。能够说整体教学的效果还好。

  透过这天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的好处和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得个性重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮忙学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮忙学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮忙学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

  数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

分数乘法教学反思6

  《分数乘法》这一单元学习的主要资料有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要资料是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法。在教学如何引导学生理解分数乘法的好处和计算方法时,我进行了一些思考。

  一、利用学生已有的知识水平与生活经验,实现新知识的迁移。

  在教学分数和整数相乘时,根据学生的已有的知识基础,课前复习设计了复习整理整数乘法的好处和同分母分数的加法的计算法则。在教学分数和整数相乘的`计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学1/5×3,首先要让学生明确,要求3个1/5相加的和,也就是求1/5+1/5+1/5是多少,并联系同分母分数加法的计算得出1+1+1/5,然后让学生分析分子部分3个1连加就是3×1,并算出结果,在此基础上,引导学生观察计算过程,个性是1/5×3与3×1/5之间的联系,从而理解为什么“用分子和整数相乘的积作分子,分母不变”。之后让学生自己尝试练一练3/7×2,然后进行群众交流,理解分数与整数相乘的计算方法。

  二、在具体的情境中,引导学生理解分数乘法的好处。

  透过具体情境,来呈现对分数乘法好处的多种解释,帮忙学生理解分数乘法的好处则显得重要。如:教科书第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,必须要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但必须要让学生联系本题情境理解算式所表示的好处。

  三、分数乘法的教学中,在书写顺序中就应不区分被乘数与乘数。

  小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既能够解释为3个5,也能够解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。本册教材第22页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,透过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式能够是1/5×3也能够是3×1/5。然后运用分数乘整数的好处解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。

  总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。

  这是一节计算课,看似很简单。但是,从学生的作业反馈状况,并不理想。从学生第一次完成的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。所以我应出示比较练习,让学生体会在过程上约分的优越性与简便性。从而养成优化方法的习惯。

分数乘法教学反思7

  由“搅乱”引起的反思。

  今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”,“是用分子相乘的积作分子,用分母相乘的积作分母”“理由是……”……

  在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的知识讲出来,结果一下子把老师事先设计的'思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的教学没了层次,讲课缺乏激情。

  对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?

  现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。

分数乘法教学反思8

  分数乘法教学是六年级下期的一个教学内容之一,其实整数乘法对于同学们来说,已经不是很陌生的问题了,所以,在传授分数乘法这一知识点时,让同学们做一做整数乘整数所表示的意义,然后。让同学们通过自习的方式对今天所学内容进行迁移。在交流时,我发现大部分学生基本上理解了分数乘法的意义及与整数乘法的异同。可是还是发现了一些问题:

  ⑴每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化。

  ⑵分数乘法中:求一个数的几分之几是本册中的'中心,是重点。本册所有数与代数教学内容都是围绕着这一中心展开的。

  ⑶在教学中要强化分率与数量的一一对应关系。在后来的混合计算这一章中进行应用题教学学生理解起来有困难。

  针对以上失误,在今后教学中要补充的内容是:

  ⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

  ⑵强化分率与数量的一一对应关系。

  ⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。

  ⑷利用分数化单位,如:2/5时=()分1/5吨=()千克

  分数的教学对于本册来说,既是一个重点,又是一个难点,要在实际的练习中加以理解和应用。

分数乘法教学反思9

  探究环节是本节课的重点,包括“理解分数乘整数的意义”和“归纳分数乘整数的计算法则”两部分,其中后者是重中之重。 “理解分数乘整数的意义”时,巧妙运用“认知迁移规律”,引导学生在比较中自主发现分数乘法和整数乘法的相通之处;“归纳计算法则”时,留给学生自主探索的空间,使学生充分经历“尝试解答——初步得出结论——验证结论——归纳法则”的过程,不仅提高了学生自主学习的意识,而且使学生掌握了学习的方法。

  总之,给学生发现的机会,他们能自己做的我们不告诉他们。如

  1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。

  2、他们能自己计算分数乘整数的式题。

  3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

  数学课中练习设计具有很强的策略性,好的练习可以使“不同的学生在练习中得到不同的发展”。本节课的`练习设计采用“题组”的形式,就是立足于尊重学生的差异,变“步伐一致”为“优者制胜”。计算速度快的同学可以有时间看书质疑,从而提高其发现问题、提出问题的能力。另外,在开放练习中,通过学生补充的条件和自编的应用题,可以把前后知识融会贯通,找到学习新知的生长点。

分数乘法教学反思10

  分数乘法应用题大致可分为两部分:一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同;另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用,它是分数应用题中最基本的。不仅分数乘法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后的感受是:

  1、开始结合复习题让学生回忆一个数乘分数的意义。对分数的`意义进一步加深认识,教学反思《《分数乘法应用题(一)》教学反思》。

  2、复习求一个数的几分之几是多少的文字题,为学习相应的分数应用题做准备。

  3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的,为以后应用题教学做好铺垫。

  4、以后在教学前我还要深钻教材,把握好课本的度,向其他老师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。

  5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习

分数乘法教学反思11

  本单元的教学,分数乘法解决问题是一个重点资料。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的好处的应用。它是分数应用题中最基本的。不仅仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的好处。在帮忙学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮忙。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的潜力将会有很大提高。而下一单元的教学如果学生能根据题意画出适宜的线段图,对正确解答问题将会有很大的帮忙。

  此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。

  具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的好处解答。

  在教学中,我强调以下几点:

  (1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

  (2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。

  (3)帮忙学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的'不同。

  对稍复杂的分数应用题,透过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的潜力。透过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。

  教学中也显露出一些问题。主要存在于:

  1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。

  2、在学生表达解题思路时,不宜群众讲,更应注重学生个体表达,并且不必必须按照课本的固定模式,就应允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。

  3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。

分数乘法教学反思11篇(分数乘法解决问题教学反思)相关文章:

故事教学教学反思9篇(故事教学活动反思)

热《搭石》教学反思12篇 搭石教学反思与建议

《千以内数的读写》教学反思3篇 千以内数的读写说课

《圆柱体积》教学反思12篇(圆柱体的体积教学反思)

照镜子教学反思3篇 镜子教学反思简短

《小石潭记》教学反思6篇 小石潭记第一课时教学反思

拼音《bpmf》教学反思9篇 部编一年级上册拼音bpmf教学反思

初中语文教学反思9篇

《美丽的小兴安岭》教学反思(精品13篇)

《猫》教学反思11篇