下面是范文网小编收集的函数数学教案12篇 数学函数课件,以供借鉴。
函数数学教案1
1.探究发现任意角 的终边与 的终边关于原点对称;
2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角 与 的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1). ;(2). ;(3). .
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.
学生自主探究
1.探究任意角 与 的三角函数又有什么关系;
2.探究任意角 与 的三角函数之间又有什么关系.
设计意图
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.
展示学生自主探究的结果
诱导公式(三)、(四)
给出本节课的课题
三角函数诱导公式
设计意图
标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.
(六)概括升华
的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)
设计意图
简便记忆公式.
(七)练习强化
求下列三角函数的值:(1).sin( ); (2). cos(-20400).
设计意图
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.
学生练习
化简: .
设计意图
重点加强对三角函数的诱导公式的综合应用.
(八)小结
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想.
3.“学会”学习的习惯.
(九)作业
1.课本p-27,第1,2,3小题;
2.附加课外题 略.
设计意图
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.
(十)板书设计:(略)
八.课后反思
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。
然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。
在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。
函数数学教案2
教学目的:
知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.
2.理解握各种三角函数在各象限内的符号.?
3.理解终边相同的角的同一三角函数值相等.
能力目标:
1.掌握三角函数定义. 三角函数的定义域,三角函数线.
2.掌握各种三角函数在各象限内的符号.?
3.掌握终边相同的角的同一三角函数值相等.
授课类型:复习课
教学模式:讲练结合
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.
2.确定下列各式的符号
(1)sin100°cs240° (2)sin5+tan5
3. .x取什么值时, 有意义?
4.若三角形的两内角,满足sincs 0,则此三角形必为……( )
A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能
5.若是第三象限角,则下列各式中不成立的是………………( )
A:sin+cs 0 B:tansin 0
C:csct 0 D:ctcsc 0
6.已知是第三象限角且,问是第几象限角?
二、讲解新课:
1、求下列函数的定义域:
(1) ; (2)
2、已知 ,则为第几象限角?
3、(1) 若θ在第四象限,试判断sin(csθ)cs(sinθ)的符号;
(2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出 的取值范围.
4、求证角θ为第三象限角的充分必要条件是
证明:必要性:∵θ是第三象限角,?
∴
充分性:∵sinθ<0,
∴θ是第三或第四象限角或终边在y轴的非正半轴上
∵tanθ>0,∴θ是第一或第三象限角.?
∵sinθ<0,tanθ>0都成立.?
∴θ为第三象限角.?
5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.
三、巩固与练习
1 求函数 的值域
2 设是第二象限的角,且 的范围.
四、小结:
五、课后作业:
1、利用单位圆中的三角函数线,确定下列各角的取值范围:
(1) sinα 2、角α的终边上的点P与A(a,b)关于x轴对称 ,角β的终边上的点Q与A关于直线=x对称.求sinαescβ+tanαctβ+secαcscβ的值. 学习目标: (1)理解函数的概念 (2)会用集合与对应语言来刻画函数, (3)了解构成函数的要素。 重点: 函数概念的理解 难点: 函数符号y=f(x)的理解 知识梳理: 自学课本P29—P31,填充以下空格。 1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。 2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 5、设a, b是两个实数,且a (1)满足不等式 的实数x的集合叫做闭区间,记作 。 (2)满足不等式a (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ; 分别满足x≥a,x>a,x≤a,x 其中实数a, b表示区间的两端点。 完成课本P33,练习A 1、2;练习B 1、2、3。 例题解析 题型一:函数的概念 例1:下图中可表示函数y=f(x)的图像的只可能是( ) 练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。 题型二:相同函数的判断问题 例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与 ④ 与 其中表示同一函数的是( ) A. ② ③ B. ② ④ C. ① ④ D. ④ 练习:已知下列四组函数,表示同一函数的是( ) A. 和 B. 和 C. 和 D. 和 题型三:函数的定义域和值域问题 例3:求函数f(x)= 的定义域 练习:课本P33练习A组 4. 例4:求函数 , ,在0,1,2处的函数值和值域。 当堂检测 1、下列各组函数中,表示同一个函数的是( A ) A、 B、 C、 D、 2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、给出下列四个命题: ① 函数就是两个数集之间的对应关系; ② 若函数的定义域只含有一个元素,则值域也只含有一个元素; ③ 因为 的函数值不随 的变化而变化,所以 不是函数; ④ 定义域和对应关系确定后,函数的值域也就确定了. 其中正确的有( B ) A. 1 个 B. 2 个 C. 3个 D. 4 个 4、下列函数完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四个图形中,不能表示函数的图象的是 ( B ) 6、设 ,则 等于 ( D ) A. B. C. 1 D.0 7、已知函数 ,求 的值.( ) 三角函数的诱导公式 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 二.教材分析 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位. 三.学情分析 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容. 四.教学目标 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力; (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观. 五.教学重点和难点 1.教学重点 理解并掌握诱导公式. 2.教学难点 正确运用诱导公式,求三角函数值,化简三角函数式. 六.教法学法以及预期效果分析 “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析. 1.教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦. 2.学法 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题. 在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习. 3.预期效果 本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题. 七.教学流程设计 (一)创设情景 1.复习锐角300,450,600的三角函数值; 2.复习任意角的三角函数定义; 3.问题:由 ,你能否知道sin2100的值吗?引如新课. 设计意图 自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法. (二)新知探究 1. 让学生发现300角的终边与2100角的终边之间有什么关系; 2.让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系; 3.sin2100与sin300之间有什么关系. 设计意图 由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫. (三)问题一般化 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 【教学目标:】 1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值. 2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题) 【教学重点:】 任意角的三角函数的定义. 【教学难点:】 任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示. 【教学用具:】 直尺、圆规、投影仪. 【教学步骤:】 1.设置情境 角的范围已经推广,那么对任一角 是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题. 2.探索研究 (1)复习回忆锐角三角函数 我们已经学习过锐角三角函数,知道它们都是以锐角 为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示. (2)任意角的三角函数定义 如图1,设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 . 定义:①比值 叫做 的正弦,记作 ,即 . ②比值 叫做 的余弦,记作 ,即 . 图1 ③比值 叫做 的正切,记作 ,即 . 同时提供显示任意角的三角函数所在象限的课件 提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢? 利用三角形相似的知识,可以得出对于角 ,这三个比值的大小与 点在角 的终边上的位置无关,只与角 的大小有关. 请同学们观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义. ④比值 叫做 的余切,记作 ,则 . ⑤比值 叫做 的正割,记作 ,则 . ⑥比值 叫做 的余割,记作 ,则 . 可以看出:当 时, 的终边在 轴上,这时 的纵坐标 都等于0,所以 与 的值不存在,当 时, 的值不存在,除此之外,对于确定的角 ,比值 , , 分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数. (3)三角函数是以实数为自变量的函数 对于确定的角 ,如图2所示, , , 分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数. 即:实数→角(其弧度数等于这个实数)→三角函数值(实数) (4)三角函数的一种几何表示 利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3. 图3 设任意角 的顶点在原点 ,始边与 轴的非负半轴重合,终边与单位圆相交于点 ,过 作 轴的垂线,垂足为 ;过点 作单位圆的切线,这条切线必然平行于轴,设它与角 的终边(当 为第一、四象限时)或其反向延长线(当 为第二、三象限时)相交于 ,当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有: 这几条与单位圆有关的有向线段 叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,正弦线、正切线分别变成一个点;当角 的终边在 轴上时,余弦线变成一个点,正切线不存在. (5)例题讲评 第二十四教时 教材:倍角公式,推导和差化积及积化和差公式 目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。 过程: 一、 复习倍角公式、半角公式和万能公式的推导过程: 例一、 已知 , ,tan = ,tan = ,求2 + (《教学与测试》P115 例三) 解: 又∵tan2 0,tan 0 , 2 + = 例二、 已知sin cos = , ,求 和tan的值 解:∵sin cos = 化简得: ∵ 即 二、 积化和差公式的推导 sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )] sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )] cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )] cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )] 这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下) 例三、 求证:sin3sin3 + cos3cos3 = cos32 证:左边 = (sin3sin)sin2 + (cos3cos)cos2 = (cos4 cos2)sin2 + (cos4 + cos2)cos2 = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2 = cos4cos2 + cos2 = cos2(cos4 + 1) = cos22cos22 = cos32 = 右边 原式得证 三、 和差化积公式的推导 若令 + = , = ,则 , 代入得: 这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。 例四、 已知cos cos = ,sin sin = ,求sin( + )的值 解:∵cos cos = , ① sin sin = , ② 四、 小结:和差化积,积化和差 五、 作业:《课课练》P3637 例题推荐 13 P3839 例题推荐 13 P40 例题推荐 13 一、教学目的 1.使学生进一步理解自变量的取值范围和函数值的意义. 2.使学生会用描点法画出简单函数的图象. 二、教学重点、难点 重点:1.理解与认识函数图象的意义. 2.培养学生的看图、识图能力. 难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题. 三、教学过程 复习提问 1.函数有哪三种表示法?(答:解析法、列表法、图象法.) 2.结合函数y=x的图象,说明什么是函数的图象? 3.说出下列各点所在象限或坐标轴: 新课 1.画函数图象的方法是描点法.其步骤: (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了. 一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来. (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点. (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线. 一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线). 2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象. 小结 本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图. 练习 ①选用课本练习(前一节已作:列表、描点,本节要求连线) ②补充题:画出函数y=5x-2的图象. 作业 选用课本习题. 四、教学注意问题 1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征. 2.注意充分调动学生自己动手画图的积极性. 3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力. 教学目标: 1.理解函数的概念,了解函数三要素.共3页,当前第1页123 2.通过对函数抽象符号的认识与使用,使学生在符号表示方面的能力得以提高. 3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习. 教学重点难点:重点是在映射的基础上理解函数的概念; 难点是对函数抽象符号的认识与使用. 教学用具: 投影仪 教学方法: 自学研究与启发讨论式. 教学过程: 一、复习与引入 今天我们研究的内容是函数的概念.函数并不象前面学习的集合,映射一样我们一无所知,而是比较熟悉,所以我先找同学说说对函数的认识,如函数是什么?学过什么函数? (要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子) 学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生. 提问1.是函数吗? (由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.) 教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化. 二、新课 现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问) 提问2.新的函数的定义是什么?能否用最简单的语言来概括一下. 学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质. (板书)2.2函数 一、函数的概念 1.定义:如果a,b都是非空的数集,那么a到b的映射就叫做a到b的函数,记作.其中原象集合a称为定义域,象集c称为值域. 问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?) 引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集. 2.本质:函数是非空数集到非空数集的映射.(板书) 然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释. 此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然. 教师继续把问题引向深入,提出在映射的观点下如何解释是个函数? 从映射角度看可以是其中定义域是,值域是. 从刚才的分析可以看出,映射观点下的函数定义更具一般性,更能揭示函数的本质.这也是我们后面要对函数进行理论研究的一种需要.所以我们着重从映射角度再来认识函数. 3.函数的三要素及其作用(板书) 函数是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例1以下关系式表示函数吗?为什么? (1);(2). 解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数. (2)由有意义得,解得.定义域为,值域为. 由以上两题可以看出三要素的作用 (1)判断一个函数关系是否存在.(板书) 例2下列各函数中,哪一个函数与是同一个函数.共3页,当前第2页123 (1);(2) (3);(4). 解:先认清,它是(定义域)到(值域)的映射,其中 . 再看(1)定义域为且,是不同的;(2)定义域为,是不同的; (4),法则是不同的; 而(3)定义域是,值域是,法则是乘2减1,与完全相同. 求解后要求学生明确判断两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用. (2)判断两个函数是否相同.(板书) 下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数的表示法,其实表示法有很多,不过首先应从函数记号说起. 4.对函数符号的理解(板书) 首先让学生知道与的含义是一样的,它们都表示是的函数,其中是自变量,是函数值,连接的纽带是法则,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明. 例3已知函数试求(板书) 分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算. 含义1:当自变量取3时,对应的函数值即; 含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即. 计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值. 最后指出在刚才的题目中是用一个具体的解析式表示的,而以后研究的函数不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究. 三、小结 1.函数的定义 2.对函数三要素的认识 3.对函数符号的认识 四、作业:略 五、板书设计 2.2函数例1.例3. 一.函数的概念 1.定义 2.本质例2.小结: 3.函数三要素的认识及作用 4.对函数符号的理解 探究活动 函数在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与函数有关的问题如在我们身边就有不少分段函数的实例,下面就是一个生活中的分段函数. 夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱. 同学们,你知道顾客是怎样店主坑人了呢?其实这样的数学问题在我们身边有很多,只要你注意观察,积累,并学以至用,就能成为一个聪明人,因为数学可以使人聪明起来. 答案: 若西瓜重9斤以下则最多应付4.5元,若西瓜重9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了. 一、锐角三角函数 正弦和余弦 第一課时:正弦和余弦(1) 教学目的 1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。 2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。 重点、难点、关键 1,重点:正弦的概念。 2,难点:正弦的概念。 3,关键:相似三角形对应边成比例的性质。 教学过程 一、复习提问 1、什么叫直角三角形? 2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示? 二、新授 1,让学生阅读教科书第一页上的插图和引例,然后回答问题: (1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达) (2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形) (3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。) (4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。) 但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。 2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。 类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的'对边BC的长。 那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢? (引导学生回答;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。) 三、巩固练习: 在△ABC中,∠C为直角。 1,如果∠A=600,那么∠B的对边与斜边的比值是多少? 2,如果∠A=600,那么∠A的对边与斜边的比值是多少? 3,如果∠A=300,那么∠B的对边与斜边的比值是多少? 4,如果∠A=450,那么∠B的对边与斜边的比值是多少? 四、小结 五、作业 1,复习教科书第1-3页的全部内容。 2,选用課时作业设计。 二次函数的性质与图像 【学习目标】 1、使学生掌握研究二次函数的一般方法——配方法; 2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质; 3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。 【自主学习】 二次函数的性质与图像 1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。 2)函数 的图像和性质: (1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。 (2)函数 为 (填“奇函数”或“偶函数”)。 (3)函数 的图像的对称轴为 。 3)二次函数 的性质 (1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。 (2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。 (3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。 跟踪1、试述二次函数 的性质,并作出它的图像。 跟踪2、研讨二次函数 的性质和图像。 跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数? 跟踪4、课本P60练习B 1、 【归纳总结】 研究二次函数的图像与性质的思路是什么? 函数二次函数 (a、b、c是常数,a≠0) 图像a>0 a<0 性质 【典例示范】 例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。 例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。 (1)函数 , 的图像的顶点是(4, ); (2)函数 , 图像的顶点是 。 教学目标 1.理解函数的概念,了解函数的三种表示法,会求函数的定义域. (1)了解函数是特殊的映射,是非空数集a到非空数集b的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体. (2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点. (3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域. 2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高. (1)对函数记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系; (2)在求函数定义域中注意运算的合理性与简洁性. 3.通过函数定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习. 教学建议 1.教材分析 (1)知识结构 (2)重点难点分析 本小节的重点是在映射的基础上理解函数的概念.,主要包括对函数的定义,表示法,三要素的作用的理解与认识.教学难点是函数的定义和函数符号的认识与使用. ①由于学生在初中已学习了函数的变量观点下的定义,并具体研究了几类最简单的函数,对函数并不陌生,所以在高中重新定义函数时,重要的是让学生认识到它的优越性,它从根本上揭示了函数的本质,由定义域,值域,对应法则三要素构成的整体,让学生能主动将函数与函数解析式区分开来.对这一点的认识对于后面函数的性质的研究都有很大的帮助. ②在本节中首次引入了抽象的函数符号,学生往往只接受具体的函数解析式,而不能接受,所以应让学生从符号的含义认识开始,在符号中,在法则下对应,不是与的乘积,符号本身就是三要素的体现.由于所代表的对应法则不一定能用解析式表示,故函数表示的方法除了解析法以外,还有列表法和图象法.此外本身还指明了谁是谁的函数,有利于我们分清函数解析式中的常量与变量.如,它应表示以为自变量的二次函数,而如果写成,则我们就不能准确了解谁是变量,谁是常量,当为变量时,它就不代表二次函数. 2.教法建议 (1)高中对函数内容的学习是初中函数内容的深化和延伸.深化首先体现在函数的定义更具一般性.故教学中可以让学生举出自己熟悉的函数例子,并用变量观点加以解释,教师再给出如:是不是函数的问题,用变量定义解释显得很勉强,而如果从集合与映射的观点来解释就十分自然,所以有重新认识函数的必要. (2)对函数是三要素构成的整体的认识,一方面可以通过对符号的了解与使用来强化,另一方面也可通过判断两个函数是否相同来配合.在这类题目中,可以进一步体现出三要素整体的作用. (3)关于对分段函数的认识,首先它的出现是一种需要,可以给出一些实际的例子来说明这一点,对自变量不同取值,用不同的解析式表示同一个函数关系,所以是一个函数而不是几个函数,其次还可以举一些数学的例子如这样的函数,若利用绝对值的定义它就可以写成,这就是一个分段函数,从这个题中也可以看出分段函数是一个函数. 函数数学教案12篇 数学函数课件相关文章: ★ 最新一年级数学教学工作总结3篇 一年级数学教学工作总结上期 ★ 数学教师年终个人工作总结2022【7篇】(精选教师个人工作总结通用) ★ 暑假安全知识教育教案范文3篇 小学生暑假安全教育教案详案函数数学教案3
函数数学教案4
函数数学教案5
函数数学教案6
函数数学教案7
函数数学教案8
函数数学教案9
函数数学教案10
函数数学教案11
函数数学教案12