下面是范文网小编整理的八年级数学说课稿3篇(初中数学八年级说课稿),以供借鉴。
八年级数学说课稿1
一、教材分析
“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。
二、学情分析
学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。对任意两角和、差的三角函数知之甚少。本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。
三、教法学法分析
(一)、说教法
基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:
1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。
2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。
3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。
4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。
(二)、说学法
从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。
四、教学目标
(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)
(一)、知识目标
1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。
(二)、能力目标
通过利用同角三角函数变换及向量推导两角差的余弦公式,学生体会利用已有知识解决问题的一般方法,提高学生分析问题和解决问题的能力。
(三)、情感目标
使学生经历数学知识的发现、探索和证明的过程,体验成功探索新知的乐趣,激发学生提出问题的意识以及努力分析问题、解决问题的激情。
五、教学重难点
(由于本节课主要内容是公式的推导,所以教学重难点如下:)
教学重点:两角差的余弦公式的推导过程及简单应用;
教学难点:两角差的余弦公式的推导。
六、教学流程
七、教学过程
(一)创设情境,导入新课
问题1:任意角的三角函数是如何定义的?
旧知,角的终边与单位圆交于是两角差的余弦公式推导的基础)
(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)
问题2:我们在初中时就知道一些特殊角的三角函数值。那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。
(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的兴趣。)
(二)探索公式,建构新知
(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的'两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。)
方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:
所以:。
方法二(向量法):在平面直角坐标系xOy内作单位圆O,,它们的终边与单位圆O的交点分别为A,B,则由向量数量积的坐标表示,有:向量的夹角就是,由数量积的定义,有于是
由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。
若(1)式是否依然成立呢?
当时,设与的夹角为,则
另一方面于是所以
也有
方法三(学生自主探究三角函数线法)
(三)例题讲解,知识迁移
例1化简求值:
(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)
(变式的教学中引导学生使用两种方法:
方法一:从公式本身思考
方法二:引导学生发现
提高学生应用知识的能力和逻辑思维能力)
(四)开放小结,归纳提升
小结:本节课你学到了那些知识,有什么样的心得体会?
口诀:余余正正异相连
(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。)
(五)分层作业,巩固提高(必做题)P127,练习1,3,4
(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)
八、 板书设计
九、教后反思
八年级数学说课稿2
【环节一】复习回顾,导入新课
1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?
设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。
【环节二】猜想发现
1、三角形内角和是多少度?
2、你能用实验的方法来验证你的猜想吗?
拼图实验,分两步完成。
第一步:我先示范图(1)的拼法,分析拼图,发现三角形内角和;
第二步:每个学生把课前准备好的三角形纸片的两个内角剪下,和第三个内角拼在一起。学生展示自己的拼法。
在拼角时,如果让学生剪下三角形的内角,学生很可能会把三角形的三个内角都剪下,把这个三角形分成四块,虽然三个角拼在一起构成了平角,但从这种拼法中寻找证明三角形内角和定理的.方法有一定难度。于是,我采取了先示范图(1)的拼法(即剪下三角形两个内角的拼在第三个内角的两旁),然后让学生动手操作:剪下两个角,拼在第三个角的一旁。
在本环节中,我还有一点困惑:如果在图(1)把∠B拼在∠A的右边,把∠C拼在∠A的左边;或者在图(2)中把∠B拼在中间,能找到三角形内角和定理的证明方法吗?
【环节三】逻辑证明
从刚才的操作过程中,你能发现证明的思路吗?
小组活动流程:
1.先独立思考;
2.组内交流你的证明思路;
3.选出小组代表发言。
设计意图:第一,通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。启发学生过△ABC的顶点A作直线∥BC,指导学生写出已知、求证、证明过程,规范证明格式;第二,在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗?
八年级数学说课稿3
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、 教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、 教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、 教学目标
知识目标:(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的'方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜: ; (a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:
让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:
通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述
× = ;
÷ = × = .
活动目的:
两种形式巩固对法则的理解。
教学效果:
理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)
(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1 计算
(1) ;
(2)
活动目的:
抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:
有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:
(1)3xy2÷ ;
(2) ÷
活动目的:
让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:
因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:
能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:
通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)
76页第一题,共3个小题。
教学效果:
在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。 分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)
教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3 计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)
先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)
教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计
主板书采用纲要式,一目了然。
一、 分式的基本性质
1、 文字叙述
2、 符号表述
二、应用
最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。
八年级数学说课稿3篇(初中数学八年级说课稿)相关文章:
★ 有关春节小学三年级作文300字3篇 关于春节三年级的作文300
★ 精品四年级写事的作文7篇 四年级写事的作文400字优秀作文
★ 关于三年级写事的作文300字6篇 三年级写事的作文300字左右的作文
★ 有关三年级写事的作文300字3篇(小学3年级写事的作文300字)
★ 八年级家长会家长代表发言稿9篇(学生家长会家长感言简短精辟)