总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此十分有必须要写一份总结。下面是范文网小编整理的小学数学思维拓展工作总结4篇(花园小学组织数学思维拓展),欢迎参阅。
小学数学思维拓展工作总结1
内容摘要:数学教学的最终目的是使学生学会一种学习方法。随着社会的进步,人们逐渐认识到小学数学教学的首要目标是培养孩子的自主能力,培养孩子的智商。因此,小学数学教育的重点应该是培养学生的思维能力。这也是教学的重任和测试教学质量的关建。本文提到了数学思维的概念,讲到了小学数学教育要具备的基本功和通过学习数学要养成的思想方法。
关健词:数学思维小学数学基本功
思维即人脑对客观现实的一种反应和概括,同时还夹杂着自己的主观意识。从数学的角度对问题进行分析,并提出解决问题的方法称作数学思维。而数学本身是对模式的一种研究,是一种抽象化的过程。数学将具体的问题普遍化、抽象化为一个纯粹的数学问题,并通过抽象的模式解决实际问题。所以,对小学数学教学来讲,以他们生活中熟悉的具体事物为依据,逐步开始以数学抽象的思维方式去进行分析。
一、数学思维的概念
数学思维是一种有条件的,按部就班的,循序渐进的思维方式,主要以判断、推理等概念性的思维形式为主要依据,是小学生数学能力的核心体现。所以,在小学数学教学过程中,需要重点培养学生的逻辑思维能力,儿童时期是逻辑思维和数学概念形成的初期。数学知识本身就具有高度的逻辑性和抽象性,所以孩子通过逻辑推理和数学思考可以锻炼他们的分析问题,解决问题的能力,帮助孩子开发大脑潜能,提高孩子的创造力。
二、小学数学教学基本功的训练与提高
小学数学教学基本功之一――数学语言运用准确。作为小学数学教师,首先要具备讲数学语言的能力。数学教师在运用数学语言进行教学的时候,尽量要做到思路清晰、表述准确、语言简洁。把复杂话变简单,把简单的话变成容易让学生听懂。保证每个学生都能准确把握教学内容。比如,一些数学老师经常会说这样一句话:“15这个数字”,其实这是一个技术性的错误,数字只有0~9这十个,而15是个数,并非数字。如果老师在讲课中不强调清楚,就会给学生留下一个错误的概念,不能准确的区分,数和数字的差别。
小学数学教学基本功之二――会写,会画。板书是指教师根据课堂教学的需要,在黑板上书写的文字、符号、以及绘制的图表。一个完整的板书可以反映教师的许多基本技能,因此教师应重视板书的设计,注重基本功的训练。数学教学板书不是单一的,有很多内容往往要用图形来表达。因此,作为小学数学教师还要具备绘画的能力。
小学数学教学基本功之三――会制作教具。小学生的思维正处于从具体形象思维到抽象逻辑思维的过渡阶段。在小学,可以提供一些教具,但不能完全满足教学的需要。当我们找不到合适的教具时,教师不得不自己动手,以达到教学效果。这就要求教师要具有,会制作教具的能力。
小学数学教学基本功之四――制作试卷。对于一些信息闭塞的山村学校来说,教师的这项基本功就变的更加重要。教师要根据课程标准、教学内容和学生的实际情况,制定相应的试卷,来测试学生的水平,改进教学方法,以便促进教学质量的提高,缩小与城市学校的差距。
三、小学数学教学要从不同的角度分析问题,看待问题
事实证明,人的智力是有差别的。有些学生确实学不好数学,可能怎么教都学不好!对于这样的'学生,我们也不必强求,可以换一种思维去对待。我们可以这样看待,他数学学不好,不一定语文学不好,他只要有一门学的好,或者有一门其他方面突出的技能,“三百六十行,行行出状元”,他就能在社会上生存,就能发挥出自己的聪明才智,为社会做贡献。同样会得到别人的认可。《非诚勿扰》的主持人孟非在主持的过程中,曾经说过一句话,他说他上学的时候,数学考20分,英语考20分,语文考150分,满分150分。就这样,孟非成为了中国最著名的主持人之一。其实从不同的角度去看待问题就会有不同的结果,事实也是这样,其实以上讲的,就是一种数学思维,从不同的角度去看待问题,从不同的角度去解答问题,就像解数学题的时候,一道题可能有好几种解法,其实在这个过程中就是在培养学生用不同的方法解决同一个问题的能力,这个角度不行,你换一个角度,说不定就会有不同的答案。
有句话说,授之以鱼不如授之以渔,数学教学不仅仅是教受学生数学课程,更多的是在传授一种学习方法,在学习的过程中,提升学生的思维能力,解决问题的能力。其实在这个过程中锻炼的,是人的思考方式。作为一名小?W数学老师,应该尽量开发学生的潜能,打开他们的思维能力,以达到教育的目的。
小学数学思维拓展工作总结2
众所周知,强调与现实生活的联系正是新一轮数学课程改革的一个重要特征。“数学课程的内容一定要充分考虑数学发展进程中人类的活动轨迹,贴近学生熟悉的现实生活,不断沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体。”就努力改变传统数学教育严重脱离实际的弊病而言,这一做法是完全正确的;但是,从更为深入的角度去分析,我们在此则又面临着这样一个问题,即应当如何去处理“日常数学”与“学校数学”之间的关系。
事实上,即使就最为初等的数学内容而言,我们也可清楚地看到数学的抽象特点,而这就已包括了由“日常数学”向“学校数学”的重要过渡。
也正由于数学的直接研究对象是抽象的模式而非特殊的现实情景,这就为相应的“纯数学研究”提供了现实的可能性。例如,就以上所提及的加减法运算而言,由于其中涉及三个不同的量(两个加数与它们的和,或被减数、减数与它们的差),因此,从纯数学的角度去分析,我们完全可以提出这样的问题,即如何依据其中的任意两个量去求取第三个量。例如,就“量的比较”而言,除去两个已知数的直接比较以外,我们显然也可提出:“两个数的差是3,其中较小的数是4,问另一个数是几?”或者“两个数的差是3,其中较大的数是4,问另一个数是几?”我们在此事实上已由“具有明显现实意义的量化模式”过渡到了“可能的量化模式”。
综上可见,即使就正整数的加减法此类十分初等的题材而言,就已十分清楚地体现了数学思维的一些重要特点,特别是体现了在现实意义与纯数学研究这两者之间所存在的辩证关系。当然,从理论的角度看,我们在此又应考虑这样的问题,即应当如何去认识所说的纯数学研究的意义。特别是,我们是否应当明确肯定由“日常数学”过渡到“学校数学”的必要性,或是应当唯一地坚持立足于现实生活。
总的来说,这就应当被看成“数学化”这一思维方式的完整表述,即其不仅直接涉及如何由现实原型抽象出相应的数学概念或问题,而且也包括了对于数量关系的纯数学研究,以及由数学知识向现实生活的“复归”。另外,相对于具体知识内容的学习而言,我们应当更加注意如何帮助学生很好地去掌握“数学化”的思想,我们应当从这样的角度去理解“情境设置”与“纯数学研究”的意义。这正如弗赖登塔尔所指出的:“数学化……是一条保证实现数学整体结构的广阔途径……情境和模型,问题与求解这些活动作为必不可少的局部手段是重要的,但它们都应该服从于总的方法。”
一、凝聚:算术思维的基本形式
由以下关于算术思维基本形式的分析可以看出,思维的分析相对于具体知识内容的教学而言并非某种外加的成分,而是有着重要的指导意义。
具体地说,这正是现代关于数学思维研究的一项重要成果,即指明了所谓的“凝聚”,也即由“过程”向“对象”的转化构成了算术以及代数思维的基本形式,这也就是说,在数学特别是算术和代数中有不少概念在最初是作为一个过程得到引进的,但最终却又转化成了一个对象――对此我们不仅可以具体地研究它们的性质,也可以此为直接对象去施行进一步的运算。
例如,加减法在最初都是作为一种过程得到引进的,即代表了这样的“输入?D输出”过程:由两个加数(被减数与减数)我们就可求得相应的和(差);然而,随着学习的深入,这些运算又逐渐获得了新的意义:它们已不再仅仅被看成一个过程,而且也被认为是一个特定的数学对象,我们可具体地去指明它们所具有的各种性质,如交换律、结合律等,从而,就其心理表征而言,就已经历了一个“凝聚”的过程,即由一个包含多个步骤的运作过程凝聚成了单一的数学对象。再如,有很多教师认为,分数应当定义为“两个整数相除的值”而不是“两个整数的比”,这事实上也可被看成包括了由过程向对象的转变,这就是说,就分数的掌握而言我们不应停留于整数的除法这样一种运算,而应将其直接看成一种数,我们可以此为对象去实施加减乘除等运算。
二、互补与整合:数学思维的一个重要特征
以上关于“过程?D对象性思维”的论述显然已从一个侧面表明了互补与整合这一思维形式对于数学的特殊重要性。以下再以有理数的学习为例对此作出进一步的说明。
首先,我们应注意同一概念的不同解释间的互补与整合。
具体地说,与加减法一样,有理数的概念也存在多种不同的解释,如部分与整体的关系,商,算子或函数,度量,等等;但是,正如人们所已普遍认识到了的.,就有理数的理解而言,关键恰又在于不应停留于某种特定的解释,更不能将各种解释看成互不相关、彼此独立的;而应对有理数的各种解释(或者说,相应的心理建构)很好地加以整合,也即应当将所有这些解释都看成同一概念的不同侧面,并能根据情况与需要在这些解释之间灵活地作出必要的转换。
其次,我们应清楚地看到解题方法的多样性及其互补关系。
众所周知,大力提倡解题策略的多样化也是新一轮数学课程改革的一个重要特征:“由于学生生活背景和思考角度不同,所使用的方法必然是多样的,教师应当尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。”当然,在大力提倡解题策略多样化的同时,我们还应明确肯定思维优化的必要性,这就是说,我们不应停留于对于不同方法在数量上的片面追求,而应通过多种方法的比较帮助学生学会鉴别什么是较好的方法,包括如何依据不同的情况灵活地去应用各种不同的方法。显然,后者事实上也就从另一个角度更为清楚地表明了“互补与整合”确应被看成数学思维的一个重要特点。
综上可见,即使是小学数学的教学内容也同样体现了一些十分重要的数学思维形式及其特征性质,因此,在教学中我们应作出切实的努力以很好地落实“帮助学生学会基本的数学思想方法”这一重要目标。
小学数学思维拓展工作总结3
为了加强我镇小学教学常规管理,保证良好的教学秩序,实现教学管理工作的制度化和规范化,使学生得到全面地健康成长,现就本年度的教学常规管理工作情况作如下总结。在师生的共同努力下,我们在原有的基础上,不断完善各项工作。取得了新的成绩。
一、备课
备好课是上好课的前提。
1、认真执行新课标,明确课程性质、目标和实施建议,从课程的三个维度制定学科教学计划,多数级科实行集体备课,重视安排好综合实践活动、学科评价方案,并落实到每节课中。
2、通过对教材内容的认识、实践、批判和反思,把课程内容(教材内容)按照学生实际需求加以组织、整合,实现对教材内容的再创造。
3、深入了解学生,掌握学生实际,面向全体,因材施教。注意在备课中突出教学重难点及突破的方法,注意问题设计的开放性、启发性,重视学生创新思维能力的培养,进行二次备课。
4、教案实施之后,进行课后反思,以随笔或后记的形式批注在教案的后边。并坚持写教学反思,老师们进行交流,讨论。
二、课堂教学。
课堂教学是提高教学质量的关键。
1、严格按教学计划、课表上课,不随意调课或增课。做好课前准备,提前到班上候课,中途不离开教室,不做与上课无关的事情,教师不坐着讲课。
2、摆正教与学的关系,激发学生学习兴趣,调动学生学习的积极性和主动性,教得轻松,学得愉快。语文课能抓住课文和教学的重难点,精心设计教法,教学思路和环节清晰,倡导自主、合作、探究的学习方式。数学课能注重学生思维探究的训练,给学生思考和表述思维过程的机会。活动类课程要重视实践性、自主性、创造性、趣味性。
3、正确使用教材,变教教材为用教材,根据课标要求和学生实际活用教材,创造性使用教材。充分利用各种的教学手段,利用校内外课程资源,注重实效,努力提高课堂教学效率。
4、教学时间分配得当,课内要有学生动手操作、合作交流、质疑问难、反馈练习的时间;留有开放性、趣味性的家庭作业,以减轻学生过重学业负担。
5、以身作则,仪表端庄,穿着整洁,美观大方,语言文明规范,教态亲切自然,教风朴实,条理清楚,板书规范,培养学生的良好习惯,严禁体罚和变相体罚学生。
三、作业与辅导。
作业是教学信息反馈的重要手段。辅导是培养优秀学生和帮助“学困生”的'有力措施。
1、作业内容要围绕教材的特点进行精选,并不断培养高年级学生自主设计(选择、确定)作业的能力,要有力于培养学生能力。不搞惩罚性作业,提倡因程度不同而布置分类作业。形式要有书面、口头、实践性作业相结合。
2、严格控制课外作业量,大部分作业应在课内完成。六年级控制在60分针之内。
3、对学生的作业严格要求,书写工整、格式正确,认真检查。
4、批改学生的作业要及时、认真、准确、规范。使用统一批改符号,注明批改日期。作业的评价还要与学生的自主评价和自主订正有机结合,应严格要求学生错题订正,教师必须进行二次批改。对学有余力的学生可适当补充思考题,发展智能。
5、对“学困生”的帮助要做到有针对性,多启发、鼓励、诱导。作业可面批面改,并进行跟踪辅导措施,学习辅导与家庭教育相配合,学生之间的互帮互助相结合,加强师生之间、生生之间的互动互助。
四、教学评价。
评价是促进教师、学生全面发展的过程。评价要采用开放、多元、多样的方式,建立教师、学生、家长共同参与的、体现多渠道信息反馈的教师评价。建立“以学论教”的发展性评价模式。对学生学习态度、兴趣、习惯、方法、知识技能、实践能力、创新精神和解决问题能力等方面进行评价。
五、存在问题
1、有时编写的教案过于简单,抄教案集,没有自己的思考;有时没有写教学反思(提出后补上),有时教学后记缺少针对性。
2、作业设置与批改:
①作业量偏少。
②学生缺少良好的学习习惯。有的学生字迹较差、作业书写不够规范,没有很好地指导;有的作业本不整洁。
③在批改方面欠规范。
3、培优辅差“辅导记录”措施不具体,缺乏跟踪记录,没有效果显示。
小学数学思维拓展工作总结4
当然,在大力提倡解题策略多样化的同时,我们还应明确肯定思维优化的必要性,这就是说,我们不应停留于对于不同方法在数量上的片面追求,而应通过多种方法的比较帮助学生学会鉴别什么是较好的方法,包括如何依据不同的情况灵活地去应用各种不同的方法。显然,后者事实上也就从另一个角度更为清楚地表明了“互补与整合”确应被看成数学思维的一个重要特点。
最后,我们应清楚地看到在形式和直觉之间所存在的重要的互补关系。特别是,就由“日常数学”向“学校数学”的过渡而言,不应被看成对于学生原先所已发展起来的素朴直觉的彻底否定;毋宁说,在此所需要的就是如何通过学校的数学学习使之“精致化”,以及随着认识的深化不断发展起新的数学直觉。在笔者看来,我们应当从这样的角度去理解《课程标准》中有关“数感”的论述,这就是,课程内容的学习应当努力“发展学生的数感”,而后者又并非仅仅是指各种相关的能力,如计算能力等,还包含“直觉”的含义,即对于客观事物和现象数量方面的某种敏感性,包括能对数的相对大小作出迅速、直接的判断,以及能够根据需要作出迅速的估算。当然,作为问题的'另一方面,我们又应明确地肯定帮助学生牢固地掌握相应的数学基本知识与基本技能的重要性,特别是,在需要的时候能对客观事物和现象的数量方面作出准确的刻画和计算,并能对运算的合理性作出适当的说明──显然,后者事实上已超出了“直觉”的范围,即主要代表了一种自觉的努力。
值得指出的是,除去“形式”和“直觉”以外,著名数学教育家费施拜因曾突出地强调了“算法”的掌握对于数学的特殊重要性。事实上,即使就初等数学而言我们也可清楚地看出“算法化”的意义。这正如吴文俊先生所指出的:“四则难题制造了许许多多的奇招怪招。但是你跑不远、走不远,更不能腾飞??可是你要一引进代数方法,这些东西就都变成了不必要的、平平淡淡的。你就可以做了,而且每个人都可以做,用不着天才人物想出许多招来才能做,而且他可以腾飞,非但可以跑得很远而且可以腾飞。”
这正是数学历史发展的一个基本事实,即一种重要算法的形成往往就标志着数学的重要进步。也正因为此,费施拜因将形式、直觉与算法统称为“数学的三个基本成分”,并专门撰文对这三者之间的交互作用进行了分析。显然,就我们目前的论题而言,这也就更为清楚地表明了“互补与整合”确应被看成数学思维的一个重要特点。
综上可见,即使是小学数学的教学内容也同样体现了一些十分重要的数学思维形式及其特征性质,因此,在教学中我们应作出切实的努力以很好地落实“帮助学生学会基本的数学思想方法”这一重要目标。
小学数学思维拓展工作总结4篇(花园小学组织数学思维拓展)相关文章:
★ 小学一年级下册数学工作总结9篇(一年级下学期数学工作总结.6)
★ ~小学二年级班主任工作总结9篇(小学二年级班主任工作总结第一学期)
★ 小学二年级语文教学工作总结15篇 二年级下学期语文教学工作总结
★ 小学六年级班主任月工作总结3篇 小学六年级班主任工作总结2023
★ 小学二年级美术教学工作总结11篇(二年级美术教学总结第一学期)