下面是范文网小编分享的数学学习计划12篇(课计划七上数学答案),以供借鉴。
数学学习计划1
——良好的开始是成功的一半
有一种普遍现象:许多初中数学学习成绩的佼佼者,进入高中后,不能适应高中的数学学习,成绩下降,笔者认为产生这一现象有两个方面的原因:一方面学生升入高中后(一般都是各县市或乡镇中学升入重点高中),发现周围都是优秀的学生,回想自己曾经是老师心中的优秀生,是同学眼中的榜样,但经过数次考试后发现优势不再,而且在其它的综合素质方面也不能崭露头角,心理出现了巨大的落差,进而消极,如果不及时调整自己的心态,容易产生自暴自弃的想法和行为,严重者还会产生精神方面的疾病,此种例子比比皆是。另一方面教学内容的加深,思维要求的提高,课堂知识容量的增加,教师讲解习题的时间减少,学生不能适应这种变化,此外初中的学习方法已不能适应高中的数学学习,教师也不再像初中那样紧盯着学生学习,更多的在于自学,针对这种现象,笔者认为有必要向高一新生讲一下如何应对高中数学学习的经验和建议。
一 、初中与高中数学的差异
高中数学与初中数学一个明显的差异是知识内容“量”的急剧增加,单位时间内接受知识信息的量与初中相比增加了许多,消化和练习的时间相应的减少了,另外,初中数学是以形象、通俗的语言方式进行表达,而广州数学则触及的是抽象的数学语言以及抽象的思维形式,各种抽象的概念性语言对思维能力提出更高的要求,此外高中数学更加强调分析过程、思想方法的贯穿及运用、思维形式的训练及能力素质的培养。
二 、学生存在的不良学习习惯
⑴思想上的松懈
有些同学把初中的那一套学习思想移植到高中来,简单的认为自己在初一、初二时并没有用功学习,只是在初三临近中考的前两三个月发奋学习就轻易的考上了高中,因而认为读高中也不过如此,高一、高二用不着那么用功,只要等到高三时再努力学习,也一样考上一所理想的大学,如果一开始抱有这种思想,等到意识到此问题的严重性,恐怕为时已晚,回天乏术,殊不知“万丈高楼平地起”,没有高一、高二的基础,高考便是空谈,到头来既是白日做梦一场空,切记!切记!!
⑵靠记忆学习数学
初中教师在讲课时,对知识点讲授非常细致,由于时间充足,内容少,学生练习多,熟能生巧,必然会取得好成绩。但观众教师在讲课时一节课会讲很多概念、例题、解题方法,时间比较紧,如果上课不集中注意力去理解课堂内容,那么课后作业就不能顺利完成,久而久之必然会影响成绩。
⑶依赖教师,忽视自学习惯
许多学生进入高中后,依旧像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权,表现在不做课堂笔记,不做纠错笔记,不做总结,不制定学习计划,坐等上课,课前不预习,上课晕头转向,实在不行就依赖家庭教师,这些做法都不科学。
⑷在头脑中没有形成数学知识体系,只注重孤立的知识点
高中数学共有140多个知识点,知识的形成过程中还蕴含着大量的数学思想方法和解题技巧,知识点之间有着较强的联系,这些往往被学生忽略。学到哪一节就看哪一节的内容,不知道章与章、节与节之间的联系,只注重表象特征,不善于深入挖掘,使得学到的知识是零散的、片面的。
⑸只注重结论与记忆,不注重知识的形成过程
高中数学概念课有着丰富的内容,学生对这些课往往轻视,对一些概念的发生、发展过程缺乏深刻的理解,只停留在表象的概括水平上和记忆层面,不能从内涵上去把握概念。比如学生在学到数列这一章节时,都会背诵数列的公式,但一碰到数列题就无从下手,原因是当时学习数列概念时没有理解概念形成过程中产生的数学思想方法,不能将这种思想方法迁移到具体问题钟来。
⑹没有形成自我反思、自我总结的`习惯
学生只满足于上课听懂老师讲授的内容,课后不进行认真消化和总结归纳,没有形成自我反思、自我总结的习惯,有很多学生认为做反思笔记没有用,其实不然,如果你想上一个重本院校,不反思、不总结,只要你足够聪明,这也是有可能的,如果你想上一所好大学,不反思、不总结绝无可能(本书中专门讲解怎样做专题笔记)。
三、掌握科学的数学学习方法是学好数学的关键
高中生仅仅想学时不够的,必须掌握科学的学习方法,才能提高学习效率,才能做学习的主人。但学无定法,每个学生都有自身的优缺点,学生应根据自己的特点及学习情况,对各种学习方法比较和积累,最终形成自己的学习方法,以下是一些共性的学习方法作简单介绍。
(一)养成课前预习的习惯
⒈预习的意义
预习是在教师讲课之前独立地自主学习新课的内容,做到初步理解并为上课做好知识准备和心理准备(一般学校都会以学案的形式给出)。预习的意义有以下三点①培养良好的学习习惯,学会自主学习,掌握自学方法,为众生学习打下基础②预习有助于了解下一节课的主要内容和重难点,为上课扫除部分知识障碍,建立新旧知识之间的联系,有利于知识的系统化③有助于提高听课效率,对预习中不懂的问题,在老师讲解时,可以做到目标明确,态度积极,注意力集中,容易将不懂的题搞懂,这样可以挤出时间记录书本上没有的知识,认真分析,从而提高学习效率。
2.预习的基本步骤
边读边思:数学课本分为引言、数学概念、规律(包括法则、定理、推理、性质、推理等)、图形、例题、习题,引言一般是以学生已有的经验和熟悉的生活常识为基础展开,内容熟悉而具体,使学生对所学的内容有一个感性的认识,新教材改革后数学概念和定理一般都以观察、思考、探究等数学活动引导学生们发现问题、提出问题,通过亲生实践、主动思考,从具体到抽象、从特殊到一般的活动来理解和掌握数学的基础知识,有很强的可操作性,这是新课改后教材最大的变化,在自学例题时,要做到:分清解题步骤,找出解题关键;弄清各解题步骤的关键,养成每步都要问为什么的习惯,尽可能的运用上面的知识;注意有些例题配有图形,即便没有也要尽可能的再通过图形角度理解例题,分析例题的解题规范和格式,再看看例题再有没有其他的解法,最后按例题格式精做几道习题。
边划边想:一般情况下学生自学的过程中都能基本把握一节课内容的重点,在自学的过程中划出本节的重点,这样做有助于学生对知识的掌握,对有疑问的地方用“?”标记,在第二天教师讲解的过程中扫除疑问,提高听课效率。
边想边写:新教材每页都有大片的空白,在自学和老师讲解的过程中将自己的看法和体会记在空白处,可以记对概念的解读,对解法的思考,对易错点的分析,对例题的条件和结论的变式等,这样总有利于学生全面把握本节内容,有些学校会配有自主研发的学案,降低了预习的难度,也是一种很好的预习方式。
(二)专心听讲,积极提出自己的问题,认真做好笔记
“学然后知不足”,听课时理解和掌握基本知识、基本技能和基本方法的关键环节,听课是要听教师是如何突破难点、重点和关键点的,听自己在预习过程中不能理解的内容,听教师对一类问题或习题是如何分析和总结。有些同学喜欢将教师的板书一字不拉的记下来,大可不必这样做,课堂笔记是记老师补充的一些重要的知识点、结论和一些经典的解法和解题技巧;只要记住解题过程,课余时间慢慢整理,一定要处理好听课和记笔记的矛盾,不要顾此失彼。
新教改后对教师的教法和学生的学法提出了更高的要求,强调学生的主体作用,教师在课堂上要积极鼓励学生参与进来,课堂上有一些问题不能依赖教师讲解,而是让每个学生都积极思考,展示自己的想法,探究更多的想法和解法,提出想法有时比解决一个问题更加重要,因为它带来的是思想的变革(笔者认为不能抛弃传统的讲授法,应内容而定)。
(三)认真完成作业,做好复习总结
认真完成作业时独立思考,分析问题,解决问题,进一步加深对所学新知识的理解和掌握新技巧的必要过程,但现实并不乐观,绝大多数学生都有抄作业的习惯,更有甚者几乎全部抄写,当然有一部分因素是作业布置不科学造成的,因此作业也是对学生一直、毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”,另外从思想上要重视作业,不把作业当成负担,作业就是工作。
及时复习,系统小结,时高效学习的另一个重要环节(本书专门讲解了如何做数学学习笔记),通过反复阅读教材,多方面查阅有关资料,强化对基本概念、知识体系的理解与记忆,将所学的新知识与与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记本上,对所学的心知识由懂到会,在复习总结时,要以教材为依据,在系统复习的基础上,参照笔记与资料,通过分析、综合、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。
(四)关注错题
有一种简单化的认识,以为错误都是知识不过关造成的,其实,解题错误的类型不只一个,在知识过关的情况下也会出现差错.既然成功的解题有知识因素,能力因素,经验因素和情感因素,那么不成功或失败的解题也会与这些因素相关,我们总结为:知识性错误,逻辑性错误,策略性错误,心理性错误.
知识性错误
主要指由于数学知识上的缺陷所造成的错误.如误解题意、概念不清、记错法则、用错定理,方法失误等.核心是所涉及的内容是否符合数学事实.例如学生在学到三角函数的公式时常常是把公式记混而出现错误.
逻辑性错误
逻辑性错误主要指由于违反逻辑规则所产生的推理上或论证上的错误.如虚假论据,不能推出,偷换概念,循环论证等,常常表现为四种命题的混淆,充要条件的错乱,反证法反设不真等.核心是所进行的推理论证是否符合逻辑规则.例如学生在学到数学归纳法这章内容时常常认为从n=k假设推证n=k+1时命题成立是显然成立的,没有用到假设就认为原命题成立,这样就违背了数学归纳法证明数学命题的逻辑规则.
知识性错误与逻辑性错误既有联系又有区别.
(1)知识性错误与逻辑性错误有联系.
由于数学知识与逻辑规则常常是相依共存的,从广义上说,我们也不能把逻辑知识排除在数学知识之外,所以,逻辑性错误与知识性错误常是同时存在的,从哪个角度进行分析取决于比重的大小与教学的需要.在上面的例子中我们已经看到,当我们说它有知识性错误时并不排除它也有逻辑性错误;同样,当我们说它有逻辑性错误时也不排除它还有知识性错误.
(2)知识性错误与逻辑性错误又有区别.
知识性错误主要指涉及的命题是否符合事实(是否符合定义、法则、定理等),核心是命题的真假性;逻辑性错误主要指所进行的推理论证是否符合逻辑规则,核心是推理论证的有效性.虽然,数学命题的事实真假性与推理论证的逻辑有效性是有联系的,但是数学毕竟不是逻辑,数学毕竟比逻辑大得多,我们依然应该在知识盲点的基本位置和主要趋势上区分知识性错误与逻辑性错误.
策略性错误
这主要指由于解题方向上的偏差,造成思维受阻或解题长度过大.对于考试而言,即使做对了,若费时费事,也会造成潜在丢份或隐含失分,存在策略性错误.在解题探求中,思维受阻或思路曲折是不可避免的,因而,探索阶段的策略性错误是很难完全消除的.
例如:不等式x2+ax+1>0在x[1,2]上恒成立,求实数a的取值范围,大多数同学
都会想到通过构造二次函数,利用二次函数动轴定区间的办法求解该问题,过程比较繁琐,如果采用分离常数法求解,问题便迎刃而解,过程简单明确.
心理性错误
这主要指解题主体虽然具备了解决问题的必要知识与技能,但由于某些心理原因而产生的解题错误.如顺序心理、滞留心理、潜在假设,以及看错题、抄错题、书写丢三落四等.高考阅卷启示我们,许多中上水平考生常在“会而不对、对而不全”上拉开录取与落榜的距离.这是一个“老大难”问题:
(1)会而不对.有的考生,拿到题目不是束手无策,而是在正确的思路上,或考虑不周、或推理不严、或书写不准,最后答案是错的,这叫“会而不对”.
(2)对而不全.另一些考生,思路大体正确,最终结论也出来了,但丢三落四,或缺欠重大步骤,中间某一逻辑点过不去;或遗漏某一特殊情况、讨论不够完备;或潜在假设、或以偏概全,这叫“对而不全”.一开始能意识到纠错的重要性对初上高中的学生至关重要.
(五)主动学习,善于对比和联想
在课堂中,学生应该主动地跟随老师的思路,主动地动脑、动手、动口,积极参与课堂教学,培养各方面能力。把由主要感知事物的外部特征的感性认识向对知识的分析、综合理解的理性认知过渡,把较多的具体形象思维向抽象的逻辑思维过渡,培养思维的主动性、独立性与灵活性,提高思维能力。在教师的指导下,通过自己的观察、实验、探索,在与他人的合作中交流自己得到的结论,在研究性学习过程中培养自己的创新精神、合作精神和实践能力。
学生在整个的学习过程中药善于联想,学会举一反三、触类旁通。比如平面几何知识向空间几何联想,数学语言与几何图形的联想,一般问题与特殊问题的联想。利用对比可以加深对知识的理解和掌握。如将指数函数与对数函数的对比,可知它们的图像位置不同,但对底数的讨论是一致的,这样可以建立合理的知识结构,系统全面地理解知识。
学习数学一定要在三个字上下功夫:“精、透、活”,只看书不做题不行,只埋头题海战术不总结积累不行。对课本知识既能钻进去,又能跳出来,结合自身的特点,寻找最佳的学习方法。方法因人而异,但学习的四环节(预习、上课、作业、复习)、一步骤(学习笔记)是不能少的。
对于一名普通的数学教育工作者,超越知识上和认识上单纯的和狭隘的思维模式,放远眼光,拓宽视野,尽可能促进学生的全面发展,是它毕生追求的信念。
数学学习计划2
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击同学学习数学的信心。
从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。认真分析运算出错的具体原因,是提高运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
1.情绪稳定,算理明确,过程合理,速度均匀,结果准确。
2.要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。同一个数学概念,在不同人的头脑中存在的形态是不一样的。
1.理解的标准:“准确”、“简单”和“全面”
“准确”就是要抓住事物的本质。“简单”就是深入浅出、言简意赅。“全面”则是既见树木,又见森林,不重不漏。
对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其包含的数学思想方法和数学思维方法。
2.记忆是大脑对知识的识记、保持和再现,是知识的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“一元一次方程”六个字,你就会想到:它的定义是什么?最简方程是什么?它的解的概念,及解方程的.一般步骤。不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必经之路。
1.如何保证数量
(1)选准一本与教材同步的辅导书或练习册。
(2)做完一节的全部练习后,对照答案进行批改。
(3)选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
(4)每天保证1小时左右的练习时间。
2.如何保证质量
(1)题不在多,而在于精。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途。
(2)落实:不仅要落实思维过程,而且要落实解答过程。
(3)复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
数学学习计划3
1学习阶梯划分
一阶基础全面复习(3月~6月)
二阶强化熟悉题型(7月~10月)
三阶模考查缺补漏(11月~12月15日)
四阶点睛保持状态(12月16日~考试前)
2参考书目
必备参考资料:
数学考试大纲
《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生
《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。
历年真题
3复习计划
1、一阶基础,全面复习(3月~6月)
学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。
复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。
2、二阶强化熟悉题型(7月~10月)
本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。
第一轮暑期强化:7~8月
学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧
复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。
第二轮秋季强化:9~10月
学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求
复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。
3、三阶模考查缺补漏(11月~12月15日)
学习目标:这一阶段的目标是保住自己在前两个阶段的成果。
1、通过对以往学习笔记的复习全面掌握考试要求;
2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。
复习建议:建议考生要做到:
1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);
2、复习教材和笔记进行必要的'记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;
3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。
4、第四阶点睛保持状态(12月15日~考试前)
学习目标:考前重点题型,应考技巧训练,保持状态
复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电、手生。同时还要调整心态,积极备考,以良好的状态到考场。
4建议学习时间
每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。
数学学习计划4
一、指导思想:
通过总学习,使学生获得的知识更加巩固,计算能力更加提高,能用所学的数学知识解决简单的实际问题,力争达到规定的教学目标。
二、重难点:
重点:100以内数的认识及加减法计算。难点:币的认识。
三、学习内容:
按知识的版块整理,学习的主要内容有六大版块。
1、认识图形。
学生需要认识长方形、正方形、三角形、平行四边形和圆,并且会用这几种图形拼图。难点在长方形与平行四边的区分。(1课时)
2、“分类与整理”的学习。
着重学习象形统计图和简单统计表。(1课时)
3.“100以内的数”的学习。
着重学习100以内数的顺序、数位表、数的组成和数的大小。学习时,可以引导学生回忆本学期学习的100以内数的相关内容。对于数位表应进行重点学习。学习过程中,对于一些比较简单的问题,可以多让学习有困难的学生说一说,逐渐培养学生学习的自信心。(1课时)
4.“100以内的加法和减法”的学习。
主要从两方面进行学习:一是100以内加减法的口算,二是用计算解决简单的问题。计算主要是“20以内的退位减法”、“整十数加、减整十数”、“两位数加、减一位数和整十数”等内容。对于“20以内的退位减法”,学生应熟练掌握。对于其他的一步口算,要求比较熟练。对于连加、连减和加减混合计算,在计算的.速度上不作要求,学生能计算正确就可以了。对于计算方法,允许学生选择自己喜欢的方法进行计算。学习时,可以先让学生计算。计算后,可以分小组讨论,这些题可以分为哪几种形式,每一种计算问题可以用什么方法计算。使学生通过讨论、交流,沟通思想,相互学习,达到共同进步的目的。同时,还可以让学生说一说每种计算方法有什么不同点。在学生讨论时,教师要注意巡视,参与学生的讨论,培养学生归纳、整理的意识。
学习解决问题时,先让学生认真看图,说一说图意。然后,学生思考:根据图意,提出数学问题?可以采用分小组讨论的方式。讨论后,按小组汇报讨论的结果,全班进行交流。(4课时)
5.币“元、角、分”的学习。
要求学生认识各种面额的人命币,知道元、角、分之间的关系并且会相互换算,会用钱款实际购物并进行简单的计算。学习时,主要让学生回忆所学的知识。如果学生遗忘了,还可以让学生用学具摆一摆,用实物帮助学生思考。(2课时)
6、“找规律”的学习
主要有图形规律、数字重复规律、数字计算规律和用规律解决问题,难点同时也需要重点学习的是,数字计算规律和用规律解决问题。(1课时)
平时的练习和综合检测计划5个课时。
四、学习的具体措施
1、首先引导学生回顾与反思自己的学习过程和收获。说说本学期我们学习了哪些知识,谈谈自己目前对哪些知识的记忆已经比较模糊,需要好好巩固。
2、充分考虑一年级学生身心发展特点,尽量采取游戏的方法,设计一些富有情趣的数学活动,让学生在快乐中学习。如学习100以内数的认识,让学生玩猜数、对口令、接龙等游戏,加深数感。又如加减法计算的学习,不能出现单纯的题海练习,这样学生会厌倦的。可以设计爬梯子、找朋友、等游戏活动,学生边玩边熟练加减法的正确计算。
3、先做后讲。学生先做题,老师根据学生的掌握程度再讲。精炼精讲,跳有价值有代表性的题目训练,避免题海战术。
4、加强家庭教育与学校教育的联系,适当教给家长一些正确的指导孩子学习的方法。
5、改进对学生评估,重视学生自身的比较,关注学生已经掌握了什么,具备了什么能力,在哪些地方还需努力。多鼓励夸奖学生,增强学生的自信心。
6、重点做好临界生、后进生的辅导工作。
数学学习计划5
一、基本情况
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.
二、指导思想
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的`基础。
三、工作任务和措施
任务:基础模块第一章至第四章
第一章集合(9月份)
第二章不等式(10月份)
第三章函数(11月份)
第四章指数函数与对数函数(12月份-1月份)
四、措施:
1.夯实“三基”
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。
因此,在教学中应注意:
A.教学面向全体学生。
B.重视概念的归纳、规律的总结、技能的训练。
C.重视知识的产生、发展过程。
D.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
A.精心设计课堂教学:
B.课堂练习典型化;
C.教学语言精练化
D.板书规范化。
3.加强学习方法指导:
A.指导学生看书,培养学生主动学习的习惯。
B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养,适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
五、各章节授课具体时间安排:
(基础模块第一章集合(约12课时)
(1理解集合、元素及其关系,掌握集合的表示法。)
(2掌握集合之间的关系(子集、真子集、相等。)
(3理解集合的运算(交、并、补。)
数学学习计划6
一、学情分析总体情况:
多数学生已经形成良好的学习习惯,课上能认真听讲,积极思维,课后认真按时完成作业,及时改错。但也有少数学生惰性强,课上不动脑筋思考问题,写作业效率低,不能主动及时改错。
二、简要复习目标:
使学生获得的知识更加巩固,计算能力和估算能力更加提高,能用所学的数学知识解决简单的实际问题,提高学习数学的兴趣,建立学好数学的信心。
三、主要内容学习状况
1、数与代数:口算乘除法,笔算乘除法以及估算学得都很好,认识一个整体的几分之一和几分之几不太熟练,年月日、千米的认识和吨的认识还存在着一些问题。解决问题的办法:;加强连续两次平均分的实际问题训练,用小数加、减法解决一些实际问题,进行求整体的几分之一或几分之几的练习,从实际中了解千米与吨的知识。
2、空间与图形:对生活中常见的平移、旋转、对称现象已初步形成了概念,物体的三视图学得也较好,但面积的'单位、计算却还有一些问题。解决问题的办法:多练习一些平移图形的训练,进行与计算面积有关的实际问题训练。
3、统计:统计表与条形统计图学得较好,但求平均数的方法却存在着问题。解决问题的方法:针对学生求平均数时只求出总数而不再去求平均数的现象多进行练习,并让学生懂得什么才是平均数,从而掌握求平均数的方法。
四、采取措施
1、使用新教材,老师和学生都有一个适应的过程,正视自己在教学中的问题,在期末复习中尽最大地努力弥补。
2、重视学生学习习惯的培养(尤其审题习惯),学习方法的指导。
3、老师要准确了解学生知识技能的掌握情况,做到心中有数,才能使复习有针对性、实效性。
4、课上注重知识的整理,基本概念理解到位,比较知识之间的区别与联系,形成知识网络。
5、注重对知识的整合,一题多用。如:一些图形中面积的计算。
6、关注后进生,加强对他们的辅导。
五、复习方法:
讲练结合,点线结合。
(先各个知识点突破,再知识点综合,最后解决生活中的问题。)突出重点,突破难点。
数学学习计划7
为了搞好期末复习,针对学生实际特制定如下复习计划:
一、总体思想:
我教七年级两个班进行全面复习,查漏补缺;先章后总,循序渐进;先概念,后题目;一步一个脚印;重基础,抓重点;知识归类,形成体系;紧抓课本,适当拓展;加强个别学生的辅导。
二、学情分析:
七年级学生年龄小,理解能力不强,自控能力弱。有部分还没有真正完全适应初中学习生活,表现出懒散、不善思考、不善总结、不在乎的思想,这样给成绩的提高带来很大的不利因素。
三、教材分析:
本期采用教材主要包括了《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、六个章节内容。重点是:《整式的运算》、《平行线与相交线》、《三角形》三章内容。教材针对初中学生的认知水平和身心发展特点,在教材内容的编排与小学知识衔接紧密;同时,注重了知识的趣味性与科学性统一、理论与实践的统一。但也有一定的弊病,知识不够系统,不够严谨,课本上讲的和考题要求不接近。这样教师就必须补充相关内容,否则是很难应考的。
四、复习目标
1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。
2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。
3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。
4、通过摸拟训练,培养学生考试的技能技巧。
本学期的知识内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本学期知识内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务。
另外,通过总复习,查缺补漏,使学习比较吃力的同学,能弥补当初没学会的知识,为今后的进一步学习打好基础。
五、复习策略:
“先分后总”的复习策略,先按章复习,后汇总复习;“边学边练”的策略,在复习知识的同时,紧紧抓住练这个环节;“环节检测”的策略,每复习一个环节,就检测一次,发现问题及时解决;“仿真模拟”的复习策略,在总复习中,进行几次仿真测试,来发现问题,并及时解决问题,促进学生学习质量的提高。及时“总结归纳”的策略,对于一个知识环节或相联系的知识点,要及时进行归纳与总结,让学生系统掌握知识,提高能力。
六、复习措施:
1、理清知识脉络:全书按六个环节处理,运用表格形式,把六章的内容并列展示出来,形成系统的知识表,理清各章知识之间的逻辑关系,形成一个清晰的知识脉络,便于学生系统掌握基础知识,把握全书的脉结构。
2、按章节串讲一遍:按全书的章节从前到后再认真解释一遍,在第一轮学习中,没有注视到的,和在学习练习中发现问题的'知识环节要仔细地讲一篇,让学生形成更细的更准确的知识点。串讲时,采用边讲边提问的方式进行,这样有助于学生深入思考,认真记忆。必要时要学生做好笔记。
3、抓住重点习题:在串讲的每一个环节之后,一定要做些练习,在备课过程中,把书中或练习册中的重点练习加以强化,发现学生不懂的地方要反复训练,直到掌握为止。对于一些优生要给予较为有难度的练习,而对于一般的学生重点还是基础性的习题,做到“分层对应”,有针对性地复习。
4、章节小测:小测在复习中很有必要,能及时巩固复习知识,同时也是发现问题的重要手段,在每天个知识环节之后,都要进行小测,小测要有针对性,让学生掌握什么,掌握到什么程度,达到什么目标。对于一些难以掌握的知识点或一些掌握不好的学生要反复训练,直至掌握为止。
5、难点强化:难点是复习的重点,把书中的难点进行整合归类,通过专项训练和反复练习的方式,把难点的内容温习好。采用个别辅导的形式,对一些有难点的学习进行特殊的训练,特殊的要求,并把难点归类分析,形成习题进行强化性的复习。
6、专项训练:对于一些大部分学生掌握不好的知识点,采取专项讲解和专项训练的方式进行复习,讲解知识点,解答方法,进行专项的测试来完成专项复习的目的。
7、系统强化:主要是通过考试的形式来强化和巩固已学的知识点,整合全章的内容,全面系统地整合知识点,以上级考试文件为准绳,把握新课标,全面考查学生的知识水平,在测试中发现问题要重点进行讲解与训练。
复习是为了更有效地提高学生的知识,拓宽学生的视野,而并非为了考试,所以,复习要全面周到,既能突出重点,又能全面掌握数学基础知识,提高应用数学的能力。使学生在最短的时间内有效提高学习成绩。
数学学习计划8
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的'类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。
3.掌握用洛必达法则求未定式极限的方法。
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法。
本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
数学学习计划9
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
1 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的`四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3 第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
4 第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
5 第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法.
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
6 第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
数学学习计划10
数学的学习在我们小学生学习阶段就是我们的重点存在,大家一定会认为小学生的数学不用太过于重视就可以轻松的拿到高分数,但是小学生阶段就是打好学习基础和养成学习习惯的阶段所以小学数学学习计划对于大家的数学学习还是非常重要的。
1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练:学习数学是不能缺少训练的.,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学学习计划11
新的开始,新的希望.在牛年的学习部将在学院领导的亲切关怀和广大同学的支持下,学习部将继续求真务实,扎实有效的开展工作,争取为学院,数学系,同学做出更大的贡献.为大家营造一个良好的气氛,我部对本学期的有关活动作如下安排:
一、常规工作:
1、每三周定时开一次例会,例会上主要汇报两周内的工作,交流近来工作、生活等想法,并对已完成的工作进行总结,对未来的工作进行安排,如平时有重要事则召开临时会议。收集和反映同学学习情况的信息。做学习、学术等各类相关调查,全面了解同学们的学习热情,反映学习气氛。
2、规范存档。做好每次会议及活动的记录工作,且以书面及电子档两种形式存放。一方面正规学习部的各项工作,一便加强管理提高工作效率;另一方面可以积极配合系及学校的各项工作。
二、内部建设:
1、加强制度建设。我部将在分组制度、例会制度、工作分工、听政制度、奖励制度和代部制(即由委员分组轮流代我部部长之职一段时间)下提高委员的积极性、责任心和统筹协调的能力。
2、加强与院、各系的学习部的联系和交流。
3、部门内部活动。组织本部门进行户外活动,加强本部成员间的交流。
4、与其他部门联合举行联谊活动(如爬山、比赛等),以增强部门间的交流。
5、部内改革。针对上学期工作不到位的地方,将努力改进,力争把工作做精,做细,做好。保持部门热情,激昂的氛围下,积极创新工作思路,进一步夯实部门基础,建设全面发展的优秀部门。
三、特色活动
为充分调动学生学习的热情,丰富学生的课外活动,满足学生对知识和实践的需求,提高学生的专业知识,学习部将定期举行相关特色活动:
1、“春暖花开”征文比赛
活动目的:为了丰富我系学生课余文化生活,增强我系学生的团结力,凝集力和创造力;激发同学内心深藏的热情;展现同学心中渴望的'个性;为我们的大学生活增加亮色,让我们的理想,情感,信念有一个挥洒的空间,让一股清新的文学风,弥漫在我们的箐箐校园。
2、拔河比赛
活动主旨:积极,向上,团结,奋进,运动,健康
活动目的:增强学生体育锻炼的意识,以组织比赛的形式为平时缺乏体育的大学生们创造运动机会,提高展现个人,集体风采的舞台。通过拔河比赛。发扬团队精神,增强组织凝集力,使学生们体会集体的力量。
3、讲座活动:
1)大学生的迷茫
讲座背景:很多大学生都在喊着自己的迷茫,没有方向感,前途迷茫。却不知道这其中的利害。
2)创业起航讲座
讲座背景:年轻的血液和蓬勃的朝气,以及“初生牛犊不怕虎”的精神让大学生对未来充满创业的希望。但不是很清楚其利弊,创业的一些条件,创业的途径,大学生创业相关保护支持政策及创业中维权法律知识。
形式:邀请深资人士和同学们交流其话题。
以上是这个学期的工作计划,我们会按活动计划安排本学期的工作,并在必要时作相应的调整。我们将尽自己的最大努力,组织好本部门的各项活动,紧密联系其他个部门,团结协作,共同做好各项工作,更好的为全系学生服务。为数学系的跨越式的发展做出我们应有的贡献。
数学学习计划12
为适应素质教育的需要,我们参加了初中数学研究性学习课题研究小组,为更好的参加活动,取得一定的成绩,现制定计划如下:
一.目的要求:
1.经历把实际问题数学化,即用数学的方式表示问题以及用数学的方法解决问题的过程,发展数学应用的能力,并体会数学与生活的密切联系和数学的应用价值;适应素质教育的需要,培养学生的动手能力,开发他们的智力。
2.以小组合作交流学习为主,培养学生自主学习和合作交流的能力。
3.经历查阅资料或实地测量获得所需数据、动手制作模型和撰写研究报告的过程,获得科学研究的体验、培养科学精神。
4.带领学生根据课本知识做相关的数学小实验,激发学生探究问题,钻研问题的能力。
5.能够综合运用数学、地理或其它学科的知识解决生活中的问题,发展社会责任感。
二.实施措施:
1.以自己所教学生为主要研究对象,利用自己的课堂,实施小组合作交流教学。
2.在借鉴其他学校的.教学方法的同时,开发适合自己学生的新的教学方法。
3.利用网络的优势,学习先进的教学思想和方法,开发自己的视野,增长自己的知识。
4.坚持平时反思和阶段反思想结合,随时总结自己研究过程中的不足与优势,作好记录,让自己的研究形成初步规模。
总之在实施的过程中,要遵循学生的身心发展和思维形成的规律。以学生发展为本,淡化学科体系,开放学习空间,让学生不是在说教中而是在体验中成长,克服简单灌输“大道理”的教学方法。以培养学生的创新精神和实践能力为宗旨,采用启发式,讨论式和研究性学习的方式教学,在重视教学研究的同时要加强对学生的学法的研究,引导学生积极参与教学过程,并注意培养学生的成就感,同时增加课堂教学中组织学生开展辩论、动手、动脑以及观看录象等活动。教师要理顺教学与课程的关系,创设情景,逐渐走向教学与课程的整合,在教学过程中实现师生互动的教学模式,教学相长,促进师生共同发展,形成开放的、学习型的教学运行环境。
数学学习计划12篇(课计划七上数学答案)相关文章:
★ 小学三年级科学教学计划12篇(三年级科学下册版本教学计划)