下面是范文网小编整理的二次函数教案模板4篇(二次函数 教案),以供参考。
二次函数教案模板1
第教学目标
18课时 二次函数(二)
1.理解二次函数与一元二次方程之间的关系;
2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程
一、知识梳理: 1.二次函数与一元二次方程的关系:
(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.
(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;
②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;
③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△
(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;
二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;
∴抛物线的顶点坐标为(3,-1)
(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.
②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题
2、已知二次函数y??x2?(m?2)x?m?1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?
分析:(1)要说明不论m取任何实数,二次函数y??x2?(m?2)x?m?1的图象必与x轴有两个交点,只要说明方程?x2?(m?2)x?m?1?0有两个不相等的实数根,即△>0.
(2)两个交点都在原点的左侧,也就是方程?x2?(m?2)x?m?1?0有两个负实数根,因而必须符合条件①△>0,②x1?x2?0,③x1?x2?0.综合以上条件,可求得m的值的范围.
三、合作交流:
1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。
2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是 。
四、中考压轴题赏析:(分组合作)
已知:二次函数y?x2?(m?1)x?m的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12?x2?10。2(1)求此二次函数的解析式;
5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.
5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2
2 移项后
合52∴xM+xN=k+4.
∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.
当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3
∴直线MN的解析式为y=x-5,2∴此时直线过
一、三、四象限,与抛物线有交点;
∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得
2M、N两点关于点E对称.
点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.
五、反思与提高:
1、本节课主要复习了哪些知识,你印象最深的是什么?
2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?
六、备考训练:
初中毕业学业考试指南P64 T7 8 9
二次函数教案模板2
二次函数的图像
略阳天津高级中学 杨 娜
课 型:新授课 课时安排: 1课时 教学目标:
1、理解二次函数中a,b,c,h,k对其图像的影响。
2、领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究,而提高识图和用图能力。
3、培养学生数形结合的思想意识。 重点难点: 1.教学重点:二次函数图像平移变换规律及应用
2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数. 教学过程:
一、导入新课
在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步研究一般的二次函数的性质。二、讲授新课
提出问题1 二次函数y?ax(a?0)的图像与二次函数y?x的图像之间有什么关系? 1.我们先画出y?x 的图像,并在此基础上画出y?2x的图像。
学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。
3.概括:二次函数y?ax(a?0)的图像可以由y?x的图像个点的纵坐标变为原来的a倍得到。 4.用几何画板演示a对开口大小得影响。5.抽象概括
?二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标 变为原来的a倍得到。
?a决定了图像的开口方向:a>o开口向上,a
?a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 6.练习列二次函数图像开口,按从小到大的顺序排列为_ 11(1)f(x)=x2;(2)f(x)=x242
问题
212(3)f(x)=-x;(4)f(x)=-3x23函数y?a(x?h)2?k(a?0)的图像与函数y?ax2(a?0)的图像之间有什么关系呢?
1.我们先一起回顾y?2x2与y=2(x+1)2+3图像的关系。(教师用几何画板演示)
在初中我们已经知道,只要把y?2x2的图像向左平移1个单位长度,再向上平移3个单位长度,就可以得到y=2(x+1)2+3的图像。它们形状相同,位置不同(如图2-22)。2.学生动手实践想想并回答课本上的问题2。3.概括:二次函数y=a(x+h)2+k(a?0), ①a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小; ②h决定了二次函数图像的左右平移,而且“h正左移,h负右移”; ③k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。
问题3 y?ax(a?0)和y?ax?bx?c(a?0)的图像之间有什么关系? 1.我们先来回顾y?2x与y?2x?4x?1的图像关系(教师在黑板演示,可以转化为顶点式)
至此我们知道把y?2x的图像向左平移1个单位长度,再向下平移3个单位长度,就可以得到y?2x?4x?1的图像(如图2-23)。
2.动画演示y?ax?bx?c(a?0)中a,b,c对图像的影响。 3.概括:
⑴一般地,二次函数y=ax2+bx+c(a≠0),通过配方可以得到它的恒等形式y=a(x+h)2 +k,从而知道可以由y=ax2 的图像
通过平移得到y=ax2+bx+c(a≠0)的图像.⑵a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小;b影响了图像的位置不仅上下平移而且左右平移;c决定了图像与坐标轴y轴的交点位置,c>0 交点在y轴上半轴,c
三、巩固练习
1.完成课后练习题1,2,3 2.把下列二次函数一般式化为顶点式:
① y?x2?8x?9 ② y??2x2?12x?16 ③y?ax2?bx?c(a?0)3.把y?x2的图像经过怎样平移可得到y?x2?8x?9的图像?
4.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解式为?
5..二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为什么? 四.小结
1.回顾二次函数y?a(x?h)2?k(a?0)中,h,k对函数图像有何影响?
二次函数y?ax?bx?c(a?0)中,确定函数开口大小及方向的参数是什么?确定函数位置的参数是什么?
2.我们经历了y?x到y?ax2(a?0),y?ax2(a?0)到y?a(x?h)2?k(a?0),通过这个过程,我们就能体会y?ax2(a?0)到y?ax2?bx?c(a?0)的图像变化过程,到研究一般函数的拓展过程。 五.作业
完成课后习题题。六.板书设计
二次函数再研究
问题1 演算过程 练习题 问题2 结论 问题3 附加题:
将二次函数y??2x的图像平移顶点移到下列各点,写出对应的函数解析式。⑴(4,0);⑵(0,-2);⑶(-3,2)⑷(3,-1)222
二次函数教案模板3
中学美术课水彩画技法教学
摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。
关键词:中学美术课;水彩画;技法教学
一、水彩画技法指导
学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。
(一)画面勾勒轮廓阶段
第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。
(二)画面着色阶段
接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。
水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。
最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。
二、重要注意事项强调
在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。
需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。
另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。
三、水彩画技法教学示例
这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。
画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。
画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。
参考文献
二次函数教案模板4
如皋市实验初中九年级(下)数学教案
设计:余亚明
2010年12月
课题:二次函数的复习
【教学目标】
1.理解二次函数的概念,会画二次函数的图象,能从图象上认识其性质。2.会用待定系数法求二次函数的解析式。3.会利用二次函数的最值解决实际问题。【教学重点】
二次函数的图象性质的运用 【教学难点】
实际问题转化为二次函数问题 【教学过程】
一、揭示课题
二、复习过程
活动一:回忆二次函数的概念、图象和性质(先独立完成,后小组交流)1.已知函数y?(m?1)xm2?3m?4?4x?3是关于x的二次函数,求m值。
2.画出上述二次函数的图象,回忆其相关性质,尽可能多地说出相关结论.(一个小组具体展示,其他小组适当补充、归纳,教师点拨。)
活动二:会用待定系数法求二次函数的解析式.已知关于x的二次函数y=ax2+bx+c的图象过点(2,0),(0,3),对称轴为直线x=-1,求该二次函数的解析式.(先独立完成,后小组交流、归纳)
(一个小组具体展示,其他小组适当补充、归纳方法及解题步骤等,教师点拨。)
1 如皋市实验初中九年级(下)数学教案
设计:余亚明
2010年12月
活动三:会利用二次函数的最值解决实际问题.某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每间每天需花费20元的各种费用。
(1)写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式。(2)房价定为多少时宾馆利润最大?
(两学生板演,其他同学独立完成后,小组交流,全班交流解题方法,思想,注意点等等)
三、师生共同谈本课的体会。
四、课堂检测
1.抛物线y?(m?2)x2开口向下,则m的取值范围是___________.2.抛物线3.二次函数y?x2?2x?8与x轴交点坐标是__________,与y轴交点坐标是______.y??x2?4x?,当x=____时,y的最____值是____.4.抛物线过点A(-1,0),B(3,0),C(0,3),求该抛物线的解析式。
二次函数教案模板4篇(二次函数 教案)相关文章:
★ 六年级数学二次备课教案2022范文3篇(小学六年级数学备课教案模板)
★ 高一数学教案函数的奇偶性最新3篇 高一数学函数奇偶性课件
★ 一元二次方程的应用初中数学第一册教案6篇 初中数学二元一次方程教案第一课时
★ 新人教版八年级数学下册二次根式教案整理15篇(人教版初二数学下册二次根式教案)