分数除法教案(通用7篇)

时间:2023-08-26 22:47:53 教案

分数除法教案

分数除法教案 篇1

  教学目标

  知识与技能:让学生经历用假设对比方法来解决分数工程问题的过程理解并掌握把工作总量看作单位”1”的分数工程问题的基本特点解题思路和解题方法。

  过程与方法:在解题的过程中,通过理清数量关系、找准工作总量来解决学习中的难点问题,掌握用假设法来解决问题的基本策略。

  情感态度与价值观:培养学生严谨的学习态度、勇于探究创新的精神及合作的意识。

  教学重点:

  掌握分数工程问题的解题思路与方法。

  教学难点:

  理解工程问题中的工作总量与单位“1”的关系及工作效率的求法。

  教学过程:

  一、复习导入

  1、以前我们学过做工问题,谁还记得做工问题涉及到哪三种量?(工作总量、工作时间、工作效率)它们之间有什么关系呢?

  生口述,教师出示投影:

  工作总量=工作效率÷工作时间

  工作效率=工作总量÷工作时间

  工作时间=工作总量÷工作效率

  2、外贸公司的蒋经理急需加工3000套服装。

  甲厂单独完成需15天。

  乙厂单独完成需10天。

  (学生根据条件提出问题,教师根据学生提出的问题进行板书)

  (1)依据三量关系,这道题已知什么?求什么?怎样列式?

  (2)说说工作效率、工作时间、工作总量三个量间的关系的其它的等量关系式

  3、引出课题:

  像这样的涉及工作效率、工作时间、工作总量的问题,在数学上,我们称之为“工程问题”。今天我们一起来探究。(板书课题:工程问题)

  二、探究新知

  1、出示例题

  外贸公司的蒋经理急需加工一批服装。甲厂单独完成需15天,乙厂单独完成需10天,两厂合作需要几天完成?

  (将导入的习题与例题放一起进行对比)

  2、阅读理解

  请找出已知量和未知量

  (已知:甲厂的工作时间,乙厂的工作时间;未知:两厂的工作效率、工作总量)

  根据工作总量、工作时间、工作效率这三者之间的关系,要求两队合修多少天能修完,还需要知道哪些条件?

  学生讨论交流后汇报:

  3、变换题中的条件再分析解答。

  (1)把3000套改为6000套、1500套、5000套、9000套。请你们以小组为单位,每一组选择一个数据解答出来。

  3、分析与解答

  (1)学生思考,讨论交流,道路长度未知,我们可以用什么方法解决这类问题

  (学生分小组思考、讨论提出解决问题的方案)

  (2)出示课堂活动卡(分小组讨论交流尝试解决问题)

  设加工套服装

  甲厂每天加工多少套:

  乙厂每天加工多少套:

  两厂合作,每天加工多少套:

  两厂合作,需要多少天:

  4、展示环节

  (1)抽3-4组同学上台进行展示,并说明解题思路。

  (2)观察比较几位同学的解决过程,找发现。

  (学生畅所欲言:几组同学的工作总量不一样,每厂的工作效率不一样,最后的结果是一样的)

  5、归纳总结

  三、巩固练习

  1、六(2)班教室做值日,由吴丽斌同学单独完成需x小时,由周超同学单独完成需小时,两人一起做,要多少时间完成?

  2、导入部分加一个条件,丙厂也来加入,丙厂单独完成需12天,请提出问题并解答!

  四、课堂总结

  1、用分数解决工程问题的方法

  (1)把工作总量看成单位“1”

  (2)谁几天完成,谁的工作效率就是几分之一

  (3)工作总量÷工作效率=工作时间

  2、还有哪些问题可以用工程问题来解答?

分数除法教案 篇2

  学习目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2 .掌握一个数除以分数的计算方法,并能正确进行计算。

  学习重点:理解一个数除以分数的意义和基本算理。

  学习难点:运用分数除法的计算方法解决实际问题。

  学习内容:

  一、分一分

  有4张同样的圆形纸片。

  (1)每2张一份,可以分成多少份?

  画一画:

  列示:

  (2)每1张一份,可以分成多少份?

  画一画:

  列示:

  (3)每1/2张一份,可以分成多少份?

  画一画:

  列示:

  (4)每1/3张一份,可以分成多少份?

  画一画:

  列示:

  (5)每1/4张一份,可以分成多少份?

  画一画:

  列示:

  二、画一画

  1.有1根2米长的绳子。

  (1)截成每段长1/3米,可以截成几段?

  画一画:

  列示:

  (2)截成每段长2/3米,可以截成几段?

  画一画:

  列示:

  /4里面有几个1/8?

  画一画:

  列示:

  三、填一填,想一想

  在〇里填上“>”“<”“=”

  4/7×1/3( )4/7 4/7×4/3( )4/7

  4/7÷1/3( )4/7 4/7÷4/3( )4/7

  4/7÷1( )4/7 4/7×1( )4/7

  先让学生独立思考,再说说判断的结果和理由。

  2、在解决实际问题时,要紧紧围绕数量关系的分析学生掌握分数应用题的解答方法。

  3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

  课后反思:

  通过今天的复习,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

  在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

  在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

分数除法教案 篇3

  教学目标:

  1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  教学重点:

  引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  教学难点:

  1、探索分数除以整数的计算方法。

  2、能够运用分数除以整数的方法解决简单的实际问题。

  教学流程:

  一、 创设情境 提出问题

  1、把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?

  2、把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

  【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们的学习状态。】

  二、 自主探究 小组交流

  (教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

  自主学习提示

  1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

  2. 同桌之间说一说彼此的想法。

  3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

  【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

  三、 交流释疑

  1、 初步感知分数除法 把一张纸的4/7平均分成2份,每份是这张纸的几分之几? 请同学们拿出图(一)来涂一涂。

  交流:为什么要这样涂,每份是这张纸的几分之几呢? 还有不同的涂法吗? 能根据这个过程列出一个除法算式吗? 这个除法算式和以前学的除法有什么不同? 这就是这节课我们要学习的分数除法。(板书)

  【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

  2、 初探算法 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  请大家在图(二)的上面涂一涂。

  交流:(展示学生不同的涂法) 同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。 怎样才能算出得数呢?

  (师提问:计算时为什么要用 3*1/3?)

  观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

  (教师出示三组算式)

  1/3÷5, 4/5÷3, 1/3÷5 指生口算。

  让学生观察每一组算式,说一说发现了什么? 根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算? (学生口述算法后)

  【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

  四、实践应用

  1、算一算

  9/10÷30 15/16÷20 14/15÷21 8/9÷6 5/6÷15

  2、填一填

  师:学会了知识就要灵活的运用,这道题你们能填上吗? 学生独立在书上第26页填一填,想一想。 集体订正。

  3、解决问题。

  师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗? 学生在练习本上列式解答。 指生汇报完成情况。 运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

  (指生口头编题,其他学生解决)

  【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

  五、课堂总结

  学生谈一谈本节课的收获。 同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

  六、布置作业

  22页练一练

  七、板书设计

  分数除法(一) ——分数除以整数 分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

分数除法教案 篇4

  教学内容:

  教材第27~28页的内容及练习。

  教学目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2.掌握一个数除以分数的计算方法,并能正确计算。

  3.培养学生解决简单实际问题的能力。

  教学重难点:

  1.掌握一个数除以分数的计算方法,并能正确计算。

  2.整数除以分数的计算法则推导过程。

  教学过程:

  一、创设情景 激趣揭题

  1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

  2.引入并板书课题:分数除法(二)

  设计意图:设疑激趣。 明确目标。

  二、扶放结合 探究新知

  1.分一分,引导感知一个数除以分数的意义。

  2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

  3.引导完成28页的填一填,想一想,你发现了什么?

  4.引导归纳计算方法。

  设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

  三、反馈矫正

  出示P28的试一试。

  1.统一分数除法的计算法则。

  2.指导完成P28练一练的1~4题。

  四、小结评价 布置预习

  1.引导小结:通过这节课的学习,你有什么收获?

  2.布置预习: P29 分数除法(三)

  板书 分数除法(二)

  4÷1/2=4×2=8 ;4÷1/4=4×4=16

  一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

分数除法教案 篇5

  【学习目标】

  1、能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养自己的语言表达能力和抽象概括能力。

  3、养成良好的计算习惯。

  【学习重难点】

  1、重点是抽象概括出分数除法的计算法则。

  2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

  【学习过程】

  一、复习

  1、列式,说清数量关系。

  小明2小时走了6 km,平均每小时走多少千米?

  速度=路程÷时间

  2、计算:151×4 ×3 ×2 ×6

  8352÷4 ÷3 ÷2 ÷6 9765

  二、探索新知

  1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

  2、探究2÷

  (1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

  (2) 动手画线段图表示已知条件与问题的关系。

  1小时走的路程,再将线段平均分成3份,其中2份

  表示的就是2小时走的路程。 3

  (3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

  2要怎样计算?它把除法转化成什么?怎样转化? 3

  、计算例3第二个算式÷,想一想÷可以转化成什么? (4) 结合解题思路,思考2÷

  4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

  

  三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

  四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案 篇6

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

分数除法教案 篇7

  教学目标

  1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

  2.能正确熟练地解答稍复杂的分数应用题.

  3.培养学生分析问题和解决问题的能力.

  教学重点

  明确分数乘、除法应用题的联系和区别.

  教学难点

  明确分数乘、除法应用题的联系和区别.

  教学过程

  一、启发谈话,激发兴趣.

  在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

  时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

  二、学习新知

  (一)出示例8的4个小题.

  1.学校有20个足球,篮球比足球多 ,篮球有多少个?

  2.学校有20个足球,足球比篮球多 ,篮球有多少个?

  3.学校有20个足球,篮球比足球少 ,篮球有多少个?

  4.学校有20个足球,足球比篮球少 ,篮球有多少个?

  (二)学生试做.

  1.第一题

  解法(一)

  解法(二)

  2.第二题

  解:设篮球有 个.

  解法(一)

  解法(二)

  解法(三)

  3.第三题

  解法(一)

  解法(二)

  4.第四题

  解:设篮球 个.

  解法(一)

  解法(二)

  解法(三)

  (三)比较区别

  1.比较1、3题.

  教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有

  什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?

  就是求一个数的`几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

  2.比较2、4题

  教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

  (1)观察讨论.

  (2)全班交流.

  (3)师生归纳.

  这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

  三、巩固练习.

  (一)请你根据算式补充不同的条件.

  学校有苹果树30棵,桃树有多少棵,

  1. 2.

  3. 4.

  5. 6.

  (二)分析下面的数量关系,并列出算式或方程.

  1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?

  2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?

  3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?

  4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?

  四、归纳总结.

  今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.

  五、板书设计

  数学教案-分数乘、除法应用题的对比

分数除法教案(通用7篇)相关文章:

小学五年级数学分数除法教案9篇 分数除法五年级北师大版教案

有关分数除法教案范文7篇(分数除法 教案)

有关分数除法教案范文4篇(分数除法分数除以分数教案)

关于分数除法教案3篇 分数除法的教案设计

《分数除法》教案12篇(分数除法教案小学)

分数除法教案4篇 分数除法计算教案

分数除法教案6篇(分数除法数学教案)

精选分数除法教案7篇(分数除法 教案)

分数除法教案模板4篇 分数除法计算教案

六年级上册数学分数除法教案9篇 小学六年级上册数学分数除法教案