关于圆的面积教案范文6篇 圆的面积优质课教案

时间:2023-10-04 18:17:00 教案

  下面是范文网小编收集的关于圆的面积教案范文6篇 圆的面积优质课教案,供大家赏析。

关于圆的面积教案范文6篇 圆的面积优质课教案

关于圆的面积教案范文1

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的'面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

关于圆的面积教案范文2

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的`面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

关于圆的面积教案范文3

  一、复习导入

  1.课件出示圆:关于圆这个图形,你已经了解了一些什么?

  学生口答。

  2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)

  二、教学例7

  1.初步猜想:猜一猜圆的面积可能与什么有关?

  2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

  (1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

  提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)

  出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。

  提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。

  在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。

  (2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

  让学生观察例题中的下面两幅图,计算并填写图下的表格。

  3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

  学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

  三、教学例8

  1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

  2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。

  提问:拼成的图形像个什么图形?

  追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

  3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

  4.进一步想像:如果将圆平均分成64份、128份……也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

  5.推导公式。

  (1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。

  交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

  追问:如果圆的.半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

  (2)根据长方形面积的计算方法,怎样来计算圆的面积?

  根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。

  追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

  6.做“练一练”。

  核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

  四、教学例9

  1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

  2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

  3.学生独立列式解答,并组织交流。

  五、做练习十九的第1题

  1.指名读题,并要求说说对题意的理解。

  2.学生独立尝试解答。

  3.反馈交流。对解答错误的学生帮助其分析错误的原因。

  六、全课小结

  今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。

关于圆的面积教案范文4

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的.半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

关于圆的面积教案范文5

  教材分析

  教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。

  学情分析:

  1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。

  2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的.圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。

  教学目标

  1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

  2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

  教学重点和难点

  教学重点: 圆的面积公式的推导及应用公式计算

  教学难点:探究圆的面积公式的推导过程

关于圆的面积教案范文6

  小学数学第十一册第四单元圆练习题

  一、填空。

  (1) 写出下面各题的最简整数比。

  ①圆的半径和直径的比是( ),圆的周长和直径的比是( )。

  ②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。

  (2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。

  (3)圆的周长是37.68分米,它的面积是( )平方分米。

  (4)圆的半径扩大3倍,它的面积就扩大()。

  (5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。

  (6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

  (7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

  (8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

  7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。

  二、判断题。正确的画“√”,错的打“×”,并订正。

  (1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

  (2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )

  (3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )

  (4)半圆的周长就是这个圆周长的一半。( )

  (5)求圆的周长,用字母表示就是C=πd或C=2πr。( )

  三、选择题。将正确答案的序号填在括号里。(8%)

  (1)画圆时,固定的一点叫()。

  ① 顶点② 圆心 ③ 字母O

  (2)从圆心到圆上任意一点的()叫做半径。

  ① 直线② 射线 ③ 线段

  (3)周长相等的图形中,面积最大的是()。

  ① 圆 ②正方形③长方形

  (4)圆周率表示()

  ① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系

  (5)半径为r的圆面积等于()。

  ① πr2 ② 2πr2 ③πd

  (6)圆的直径长度决定圆的()。

  ① 位置② 大小 ③ 形状

  (7)圆的半径扩大3倍,它的面积就扩大()。

  ① 3倍 ② 6倍 ③ 9倍

  (8)已知圆的周长是106.76分米,圆的半径是()。

  ① 17分米②8.5分米 ③ 34分米

  四、应用题。

  (1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?

  (2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?

  (3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)

  (4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?

  (5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?

  (6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?

  (7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?

  (8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?

  小学数学六年级(上册)圆测试题 (上)

  一、填空

  1、( )决定圆的大小,( )决定圆的位置。

  2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,

  3、( )是圆中最长的线段。

  4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。

  5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的`( )倍。

  6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )

  7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。

  8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。

  9、圆的周长总是直径()倍,是半径的( )倍。

  10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。

  11、在同一个圆里,直径和半径的关系用字母表示是()。

  12、一个半圆,半径是r,它的周长是( )。

  二、判断

  1、直径是半径的2倍。

  2、两端都在圆上的线段,叫半径。

  3、半径是2厘米的圆周长和面积相等。

  4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。

  5、如果圆的直径是d,它的面积是 πd2 。

  6、圆周率就是3.14

  7、半圆形的周长就是圆周长的一半。

  8、直径是圆的对称轴。

  9、一个圆的面积和一个正方形的面积相等,它们的周长也相等

  10、半圆形的面积就是圆面积的一半

  三、应用

  1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。

  (1)、栅栏的长度是多少?

  (2)、这条小路的面积是多少?

  2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?

  3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)

  4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?

  5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?

  6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?

  7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?

  8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?

  9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?

  10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?

  11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?

  12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?

关于圆的面积教案范文6篇 圆的面积优质课教案相关文章:

面积和面积单位教案3篇 面积和面积单位优质教案

面积和面积单位教案模板6篇 面积和面积单位思维导图

圆的面积的教学反思【精华6篇】

圆面积的教案【必备14篇】

长方形面积的计算教案10篇(小学数学长方形面积计算教案)

圆的面积六年级数学教案3篇 六年级圆的面积推导公式

《组合图形的面积》数学教案6篇(组合图形的面积第二课时教案)

《圆的面积》教学设计与反思【汇总11篇】

人教版五年级上册数学《三角形的面积》教案8篇 五年级三角形面积怎么求如何讲解

小学正方形面积教案合集6篇