下面是范文网小编收集的《勾股定理》说课稿4篇 勾股定理说课教案模板,欢迎参阅。
《勾股定理》说课稿1
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大,我们的教材在编写时注意培养大家的.动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并且掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、主要就是培养学生观察、比较、分析、推理的能力。
4、通过介绍我们中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:
勾股定理的证明和应用。
教学难点:
勾股定理的证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5,小学数学教案《数学 - 勾股定理说课稿》。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:
怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习 强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
《勾股定理》说课稿2
尊敬的各位评委、老师,您们好。
我是临沂市苍山县实验中学的**。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此老师们利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国的数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一步 情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的`重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。
(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用
第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
《勾股定理》说课稿3
尊敬的各位评委,各位老师,大家好:
我今天说课的内容是《勾股定理的逆定理》第一课时。下面我将从教材、目标、重点难点、教法、教学流程等几个方面向各位专家阐述我对本节课的教学设想。
一、说教材。
这节内容选自《苏科版》义务教育课程标准实验教科书数学八年级上册第三章《勾股定理》中的第二节。勾股定理的逆定理是几何中一个非常重要的定理,它是对直角三角形的再认识,也是判断一个三角形是不是直角三角形的一种重要方法。还是向学生渗透“数形结合”这一数学思想方法的很好素材。八年级正是学生由实验几何向推理几何过渡的重要时期,通过对勾股定理逆定理的探究,培养学生的分析思维能力,发展推理能力。在教学中渗透类比、转化,从特殊到一般的思想方法。
二、说教学目标。
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标:
1、知识与技能:探索并掌握直角三角形判别思想,会应用勾股定理及逆定理解决实际问题。
2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度、价值观:培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。
三、说教学重点、难点,关键。
本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点及关键。
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导。
关键:动手验证,体验勾股定理的逆定理。
四、说教法。
在本节课中,我设计了以下几种教法学法:
情景教学法,启发教学法,分层导学法。
让学生实践活动,动手操作,看自己画的三角形是否为一个直角三角形。体会观察,作出合理的推测。同时通过引入,让学生了解古代都用这种方法来确定直角的。对学生进行动手能力培养的同时,引导命题的形成过程,自然地得出勾股定理的逆定理。既锻炼了学生的实践、观察能力,又渗透了人文和探究精神。
五、说教学流程。
1、动手实践,检测猜测。引导学生分别以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm为边画出两个三角形,观察猜测三角形的形状。再引导启发学生从这两个活动中归纳思考:如果三角形的三边长a、b、c满足,那么此三角形是什么三角形?在整个过程的活动中,尽量给学生充足的时间和空间,以平等的身份参与到学生活动中来,帮助指导学生的实践活动。
2、探索归纳,证明猜测。
勾股定理逆定理的证明不同于以往的几何图形的证明,需要构造直角三角形才能完成,构造直角三角形就成为解决问题的关键。如果此时直接将问题抛给学生证明,学生定会觉得无从下手。我就采用分层导进的方法,让学生从具体的例子中感受总结,再归纳到中抽象中来。于是我就设计了这样的两个步骤:
先补充一道例题:三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么联系?你是怎么得到的?请简单说明理由。
然后再更改上面的例题,变为△ABC三边长为a、b、c,满足,与以a、b为直角边的直角三角形之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。
在这个过程中,要努力引导学生联想到“全等”,进而设法构造直角三角形,让学生在不断的尝试、探究的过程中,总结出勾股定理的`逆定理。有效地突破本节的难点。同时提出原命题与逆命题及其关系。培养良好的数学学习习惯对学生的可持续发展是非常重要的,归纳出定理后,与学生一起分析定理的题设与结论,并与勾股定理进行对比,明白两定理是互逆定理。
3、尝试运用,熟悉定理。
课本中的例题是让学生进一步熟练掌握勾股定理的逆定理及其运用的步骤。
4、分层训练,能力升级。有针对性有层次性地布置练习,及时反馈教学效果,查缺被漏,并对有困难的学生给予指导。
5、总结内容,强化认识。使学生再次感悟勾股定理的逆定理,体会定理的互逆性,加深对“数形结合”的理解,更深刻地理解数学思想方法在解题中的地位和作用,激发学生学习数学的兴趣。
6、布置作业。有代表性地布置不同层次的作业,尊重学生的个体差异,满足多样化学习的需要。
结束语:我的说课完了,非常感谢各位领导和专家给了我这次学习、聆听、参与、锻炼的机会。谢谢大家!
《勾股定理》说课稿4
一、教材分析
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一。它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一。在实际生活中用途很大,教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,让学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:
1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的`证明。
二、教法和学法
教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:
1、以自学辅导为主,充分发挥教师的主导作用;运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理。提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境 以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知 理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难 讨论归纳
1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;
(1)这两个图形有什么特点?
(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习 强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结 练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
《勾股定理》说课稿4篇 勾股定理说课教案模板相关文章:
★ 勾股定理的逆定理说课稿5篇 勾股定理的逆定理教学设计第二课时