下面是范文网小编整理的《百分数的应用》教案7篇 百分数的应用备课,以供参考。
《百分数的应用》教案1
教学目标
1.使学生了解本金、利息、利率、利息税的含义.
2.理解算理,使学生学会计算定期存款的利息.
3.初步掌握去银行存钱的本领.
教学重点
1.储蓄知识相关概念的建立.
2.一年以上定期存款利息的计算.
教学难点
“年利率”概念的理解.
教学过程
一、谈话导入
教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?
教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.
二、新授教学
(一)建立相关储蓄知识概念.
1.建立本金、利息、利率、利息税的概念.
(1)教师提问:哪位同学能向大家介绍一下有关储蓄的.知识.
(2)教师板书:
存入银行的钱叫做本金.
取款时银行多支付的钱叫做利息.
利息与本金的比值叫做利率.
2.出示一年期存单.
(1)仔细观察,从这张存单上你可以知道些什么?
(2)我想知道到期后银行应付我多少利息?应如何计算?
3.出示二年期存单.
(1)这张存单和第一张有什么不同之处?
(2)你有什么疑问?(利率为什么不一样?)
教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.
4.出示国家最新公布的定期存款年利率表.
(1)你发现表头写的是什么?
怎么理解什么是年利率呢?
你能结合表里的数据给同学们解释一下吗?
(2)小组汇报.
(3)那什么是年利率呢?
(二)相关计算
张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?
1.帮助张华填写存单.
2.到期后,取钱时能都拿到吗?为什么?
教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)
3.算一算应缴多少税?
4.实际,到期后可以取回多少钱?
(三)总结
请你说一说如何计算“利息”?
三、课堂练习
1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息
捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?
2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:
(1)800×11.7%
(2)800×11.7%×2
(3)800×(1+11.7%)
(4)800+800×11.7%×2×(1-20%)
3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?
四、巩固提高
(一)填写一张存款单.
1.预测你今年将得到多少压岁钱?你将如何处理?
2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?
(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?
五、课堂总结
通过今天的学习,你有什么收获?
六、布置作业
1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?
2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?
3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?
七、板书设计
百分数的应用
本金 利息 利息税 利国利民
利率:利息与本金的比值叫利率.
利息=本金×利率×时间
探究活动
购物方案
活动目的
1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.
2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.
3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.
活动过程
1.教师出示价格表
A套餐原价:16.90元 现价:10.00元
B套餐原价:15.40元 现价:10.00元
C套餐原价:15.00元 现价:10.00元
D套餐原价:15.00元 现价:10.00元
E套餐原价:18.00元 现价:10.00元
F套餐原价:14.40元 现价:10.00元
学生讨论:如果你买,你选哪一套?
2.教师出示价格表
A套餐原价:16.90元 现价:12.00元
B套餐原价:15.40元 现价:10.78元
C套餐原价:15.00元 现价:12.00元
D套餐原价:15.00元 现价:12.00元
E套餐原价:18.00元 现价:13.50元
F套餐原价:14.40元 现价:12.24元
学生讨论:现在买哪一套最合算呢?
3.教师出示价格表
每套18.00元,冰淇淋7.00元.
第一周:每套16.20元;买一个冰淇淋回赠2元券.
第二周:降价20%;买一个冰淇淋回赠2元券.
第三周:买5套以上打七折;买一个冰淇淋回赠2元券.
学生讨论:
(1)你准备在哪一周买
(2)你打算怎么买?
(3)你设计方案的优点是什么?
《百分数的应用》教案2
教学内容
课本第31~32页内容。
教学目的
1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
教学重难点
求一个数比另一个数多(少)百分之几的应用题。
教学过程
一、复习
1.口答。
①4是5的百分之几?
②5是4的百分之几?
2.基础训练。
指出下列各题中,哪一个是单位“1”的量,谁与单位“1”的量相比?
(1)男生人数是女生人数的百分之几?
(2)实际产量是计划的百分之几?
(3)某实验田普通水稻的平均产量是每公顷5.6吨,采用杂交技术后,水稻的平均产量为每公顷7吨,杂交水稻每公顷的产量是普通水稻的百分之几?普通水稻每公顷的产量是杂交水稻的百分之几?
3.引入新课。
将基础训练第(3)题的两个问题改为:杂交水稻比普通水稻每公顷增产百分之几?杂交水稻比普通水稻每公顷减少百分之几?同学们是否会做?引出课题:“求一个数比另一个数多(少)百分之几的应用题”
二、新授
1.问题:杂交水稻比普通水稻每公顷增产百分之几?
(1)让学生读题后
(2)指导学生边审题边画出线段图
师生共同分析:问题是求谁是谁的.百分之几?杂交水稻比普通水稻每公顷增产多少吨怎么求呢?板书:增产的数量÷普通水稻的产量
(7-5.6)÷5.6=1.4÷5.6=0、25=25%
或7÷5.6=1.25=125%125%-100%
2.问题
②杂交水稻比普通水稻每公顷增产多少吨怎么求呢?
提问:谁是单位“1”的量?谁与单位“l”的量相比?怎样计算?
板书:少的数量÷普通水稻
3.提问:这道例题还有其他的解法吗?师生共同讨论。
让学生说说算理。
三、巩固练习
1、下列各题,每小题均回答三个问题:
a.谁是单位“1”的量?
b.谁与单位“1”的量相比?
c、比较量对应的分率是多少?
(1)男工人数比女工多百分之几?
(2)今年每公亩的产量比去年增产百分之几?
(3)汽车速度比火车速度慢百分之几?
(4)红花朵数比黄花朵数少百分之几?
2、(1)4比5少百分之几?
(2)5比4多百分之几?
3.五(1)班有男生25人,女生20人。求男生人数是女生的百分之几?女生人数是男生的百分之几?男生人数比女生多百分之几?女生人数比男生少百分之几?
(注意单位“1”)
4.列式计算课本第32页“试一试”。
四、课堂小结
提问:今天我们又学了百分数应用题,它的结构特征如何?如何求相差数的百分率?
五、作业
课本第32页“练一练”第1~3题。
第2课时
教学内容
补充练习题。
教学目的
通过练习使学生进一步熟练地掌握求一个数比另一个数的多课时(或少)百分之几的的应用题的解题方法;提高解答这类题的能力。
教学过程
一、明确本节练习课的内容和目的
进一步理解解答这类应用题的关键是弄清谁是谁的百分之几,谁是单位“1”的量。
二、基本练习
1.口答。
5是4的百分之几?4是5的百分之几?
5比4多百分之几?4比5少百分之几?
2.只列式不计算。
①张师傅一家去年人均收入6500元,今年人均收入增加了500元,增加了百分之几?去年人均收入是今年的百分之几?
②张师傅一家今年人均收入7000元,比去年增加了500元,比去年增加了百分之几?今年人均收入是去年的百分之几?
学生列式后,师生进一步讨论:这两题分别是谁和谁比?谁是单位“1”?
三、变式练习
1.根据问句,说出谁和谁比,谁是单位“1”的量。
①松树棵数是柳树棵数的百分之几?
②汽车速度比自行车速度快百分之几?
③降价了百分之几?
④增产了百分之几?
⑤超过计划的百分之几?
2.判断。(让学生用手势表示“√”或“×”)
①因为5比4多25%,所以4比5少25%。()
②100克水中加10克盐,盐占盐水的10%。()
③玲玲已做对了45道口算题,还有5道没做对,那么正确率是90%。()
3.列式解答。
(1)小明有故事书5本,小兰有故事书8本,小兰比小明多百分之几?()
(2)购买同一刑号的电脑,今年售价0、8万元,去年售价1、2万元,今年售价比去年降低了百分之几?()
四、发展练习
比较每组中两道题的联系与区别,并列式。
第一组:
(1)甲数是50,乙数比甲数少10,乙数比甲数少百分之几?
(2)甲数是50,乙数是40,乙数比甲数少百分之几?
第二组:
(1)某厂原计划生产200台机床,实际比计划多生产20台,实际比计划多生产百分之几?
(2)某厂原计划生产200台机床,实际比计划多生产20台,实际生产的台数是计划的百分之几?
五、课堂小结
求一个数比另一个数的多课时(或少)百分之几的的应用题的解题方法你会了吗?
六、作业
课本第33页第4、5题。
《百分数的应用》教案3
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。
教学重点难点:
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备:
课件。
教学过程:
一、复习旧知,导入新课
1、师:同学们,今天这节数学课我们一起来研究百分数的应用。(板书:百分数)什么是百分数?你能说一个生活中的百分数吗?你怎么理解这个百分数?
2、师:因为百分数的意义使百分数在日常生活中的应用非常广泛,今天要研究的主题就是百分数的应用(补充板书:百分数的应用)
二、教学过程
活动一:创设情境,引出新知
1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?
2、课件出示情境,引导学生观察
师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看:
45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
3、师:根据这两个条件,你能提出什么问题?
生提问,师选择板书。
(1)、冰的体积是原来水的体积的百分之几?
(2)、原来水的体积是冰的体积的百分之几?
(3)、冰的体积比原来水的体积增加百分之几?
4、在这些问题中,我们能解决哪些问题?
师生共同解决,并将解决的问题擦掉。
活动二:理解“增加百分之几”。
1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?
2、学生用自己的方式理解“增加百分之几”的`意思。
3、全班汇报,由口头理解的不清晰,引出线段草图。
4、对比书中的线段图和学生的线段草图,引导学生思考“增加了……”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的体积增加了,增加了百分之几指的增加了谁的百分之几?
通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。
5、列式计算,数形结合,说出两个列式的含义
6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。
可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。
三、训练巩固
1、根据问句,说出谁和谁比,谁是单位“1”的量。
①女生人数是男生人数的百分之几?
②梨的质量是苹果质量的百分之几?
③降价了百分之几?
④增产了百分之几?
2、消费宝典
电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)
(引导学生先理解“降低百分之几”再列式计算。)
3、建设新农村
选一选:
光明村今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?
(1)、(121-66)÷121
(2)、 66÷121
(3)、 66÷(121-66)
(让学生说出选择的依据。)
四、课堂小结
通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。
《百分数的应用》教案4
北师大版小学六年级上册数学教案,依据教材文章选择优质教学设计及优质教案,为你提供全方位的优秀教案。
教学目标:
1、结合现实情境进一步认识增加百分之几或减少百分之几的意义,加深对百分数意义的理解。
2、能解决比一个数增加百分之几的数或比一个数减少百分之几的数的实际问题,通过画线段图等方法。
3、培养学生解决实际问题的能力,体会百分数与现实生活的密切联系。
教学重点:
理解增加百分之几或减少百分之几的'意义。
教学难点:
能解决有关增加百分之几或减少百分之几的实际问题。
教学过程:
一、 情景导入揭示课题
同学们,近几年咱们庄河发生了翻天覆地的变化,从1997年至今,我国铁路已经大规模提速。一列火车,原来每小时行驶180千米,提速后,这列火车的速度比原来增加了50%。现在这列火车每小时行驶多少千米?
今天,我们一起来研究火车提速的问题百分数的应用(二)。
板书课题《百分数的应用二》
二、 建立模型
1. 探究新知
(1)。引导学生独立思考你想用什么方法解决这道题。
(2)以同伴交流你的思考过程。
(3)小组汇报,交流情况。
咱们可以通过画线段图帮助理解题意。
请同学们仔细观察线段图,思考一下这列火车的速度增加了50%是什么意思呢?让学生小组讨论。通过观察然后结合我们上节课学习的知识,发现现在火车速度增加了那部分是原来的50%。这样,我们就先计算出现在火车速度比原来增加了多少千米。
① 18050%=90(千米)
然后,让学生独立完成下一步列式
② 180+90=270(千米)
那么,这道题还有没有其它的解题方法呢?让学生小组讨论。也可以这样算,把原来的速度看作是整体1(100%),用1+50%=150%,求出现在的速度是原来的百分之几。然后,让学生独立完成下一步列式,180150%=270(千米)。(可以列综合算式和分步算式)
请同学看教材第92页练一练,找一位同学读题,思考一下二成是什么意思呢?指名让学生说。几成就是十分之几,也就是百分之几十。即:一成就是1/10,也就是10%;二成就是2/10,也就是20%。
三、解释应用与拓展
1.春雷小学去年毕业的学生有160人,今年毕业的学生比去年毕业的增加15%,今年毕业的学生有多少人?让学生独立解答,加深对百分数应用问题的理解。
2.街心公园的总面积为24000米2 ,其中建筑、道路等占公园总面积的25%,其余为绿地,街心公园的绿地总面积有多少千米?
让学生独立解答,然后说出两种解题方法,培养学生用多种方法解决简单的实际问题的能力。
四、总结
通过这节课的学习你有什么收获。
板书设计:
课题在黑板上中间,左边写线段图,中间写解题过程。
《百分数的应用》教案5
在六年级(上册)“认识百分数”里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以和根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。
1.以实际问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。
解答例1的关键是理解问题的具体含义,教材借助直观的线段图,让同学考虑“实际造林比原计划多百分之几”应该怎样理解。明确这个问题是求实际造林面积超越原计划的公顷数相当于计划造林公顷数的百分之几,从而发生先算出实际造林比原计划多4公顷,再求4公顷是计划造林面积16公顷的百分之几这样的思路。或者先算出实际造林面积是原计划的125%,再得出实际造林比原计划多25%的结论。两条思路、两种算法都是把原计划造林公顷数看作单位“1”(即100%),在线段图上能清楚地看到,两种解法最终都是求实际造林比原计划多的局部是原计划的百分之几。练习一第1题利用已知的“是百分之几”求“增加百分之几”,或者利用已知的“增加百分之几”求“是百分之几”,通过百分数之间的相互转化,进一步理解“增加百分之几”的含义,还带出了“下降百分之几”这个概念。
实际造林比原计划多百分之几与原计划造林比实际少百分之几是两个不同的问题,前者是实际造林比原计划多的公顷数与原计划造林公顷数相比,后者是原计划造林比实际造林少的公顷数与实际造林公顷数相比,解决两个问题的算式中,被除数的意义不同,除数也不同。教材编写“试一试”的目的就是要突出这些不同,要求教师在适当的时候组织同学将“试一试”和例题的计算结果进行比较,研究为什么得数不同,进一步理解这两个问题的含义与数量关系。练习一第5题里,第(1)、(2)题的条件相同,问题不同,第(2)、(3)题的条件不同,问题也不同。通过解题与比较,能使同学更正确地理解“是百分之几”与“高百分之几”的含义。第7题分别求巧克力的单价比奶糖、水果糖和酥糖贵百分之几,要依次把巧克力比奶糖、水果糖、酥糖贵的.单价与奶糖、水果糖、酥糖的单价相比,反复体验求一个数比另一个数多百分之几的解题思路与方法。第8题以表格形式出现求百分数的问题,首次把百分数应用于统计表中。
2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。
例2结合纳税教学求一个数的百分之几是多少的问题,先找到数学问题“60万元的5%是多少”,然后把求一个数的几分之几是多少的经验迁移过来,得到“求一个数的百分之几是多少,也用乘法计算”,于是列出算式60×5%。在上面的过程中,关键在于寻找数学问题,只要理解了缴纳的营业税是60万元的5%,同学就会想到用乘法计算,把求一个数的百分之几纳入原有的经验系统,从而发展认知结构。在计算60×5%时,可以把5%化成5/100,也可以化成0.05,前一种算法又一次体验了求一个数的百分之几与求一个数的几分之几是一致的,用乘法计算是合理的。在“练一练”里,由于6.2×5/100的计算比6.2×0.05麻烦,所以计算含有百分数的乘法一般把百分数化成小数。
《百分数的应用》教案6
教学目标:
1、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、培养学生分析问题、解决问题的能力,激发学生学习数学的兴趣。
重点难点:
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。
教具准备:
课件。
教学过程:
活动一:创设情境,引出新知
1、师:同学们,在炎热的天气里人们常常用冰块来消暑降温。你们制作过冰块吗?水结成冰之后体积发生了什么变化?
2、课件出示情境,引导学生观察
师:有一位同学把他制作冰块的过程记录了下来,(大屏幕出示实验记录)请看45立方厘米的水,结成冰后,冰的体积约为50立方厘米。
3、师:根据这两个条件,你能提出什么问题?
生提问,师选择板书。
(1)冰的体积是原来水的体积的百分之几?
(2)原来水的体积是冰的体积的百分之几?
(3)冰的体积比原来水的体积增加百分之几?
4、在这些问题中,我们能解决哪些问题?
你知道冰的体积比原来水的体积增加百分之几吗?下面就让我们一起来学习百分数的应用。(板书课题)
活动二:理解“增加百分之几”。
1、师:今天我们重点解决“冰的体积比原来水的体积约增加百分之几?”这个问题,一起读题,你觉得哪句话最难理解?
2、学生用自己的方式理解“增加百分之几”的意思。
3、全班汇报,由口头理解的不清晰,引出线段草图。
4、对比书中的线段图和学生的线段草图,引导学生思考“增加了”这个省略号背后所隐含的意义,从图上看出,冰的体积比水的'体积增加了,增加了百分之几指的增加了谁的百分之几?是谁和谁比?
通得讨论得出:冰的体积比水的体积增加的部分是水的体积的百分之几。
5、列式计算,数形结合,说出两个列式的含义
6、课件演示,小结两种解题思路。“增加百分之几”指的是增加的部分是单位“1”的百分之几。
可以先求出增加的部分再除以单位“1”;也可以先求出增加后是单位“1”的百分之几再减去单位“1”。
活动三:理解减少百分之几
1.把这50立方厘米的冰,再化成45立方厘米的水,水的体积比冰的体积减少百分之几?是11%吗?(板书50立方厘米的冰——45立方厘米的水,水的体积比冰的体积减少百分之几?)
2.多百分之几和少百分之几是一个数吗?为什么?不是一个数,因为他们对比的量不同,也就是单位一不同
三、训练巩固
1、根据问句,说出谁和谁比,谁是单位“1”的量。
(1)男工人数比女工多百分之几?
(2)今年每公亩的产量比去年增产百分之几?
(3)汽车速度比火车速度慢百分之几?
(4)红花朵数比黄花朵数少百分之几?
2、消费宝典
电饭煲降价,原价220元,现价160元,价格降低了百分之几?(百分号前保留一位小数)
(引导学生先理解“降低百分之几”再列式计算。)
3、建设新农村
选一选:今年每百户拥有彩电121台,比去年增加66台,今年比去年增长了百分之几?
(1)(121-66)÷121
(2)66÷121
(3)66÷(121-66)
(让学生说出选择的依据。)
四、课堂小结
通过这节课的练习,我们理解并掌握了“求一个数比另一个数多(或少)百分之几”的实际问题,解题的重点是理解题意,关键是正确地找到单位“1”。
板书设计:
方法一:先求出冰的体积比水的体积增加的数量,再求出增加的部分是水的体积的百分之几。
50-45=5(㎝3)
5 ÷45 ≈11%
方法二:先求出冰的体积是水的体积的百分之几,再把水的体积看作100%,用减法求出增加百分之几。
50÷45≈111%,
111%-100%=11%
《百分数的应用》教案7
一、说教材
教学内容:
利息是安排在小学数学北师大教材第十一册第二单元的第四课时。这部分教材是在学生学习了常用百分率、求一个数的百分之几是多少的应用题的基础上进行教学的,是百分数应用的一种,利率这个百分数对于学生来说较为陌生,也更为专业化,它表示利息和本金的关系,因此要让学生的潜意识中有所转变:利率不难理解,它和我们之前学习过的百分数是一样的。我本堂课的教学目标设定,以使学生理解并掌握利率的意义为主,从而掌握求利息的方法,以及了解利息税知识。同时培养学生的应用意识和实践能力。使学生掌握有关储蓄、纳税的一些知识,同时受到勤俭节约的思想教育。
教学目标:
根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。
1、通过阅读资料及预习,使学生了解生活中储蓄的相关知识,培养学生的观察意识,分析能力,同时培养学生在调查预习活动中的收集、提取、整理、归纳信息的能力。
2、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
3、结合储蓄等活动,学会合理理财,逐步养成不乱花钱的好习惯。
重点难点:
1、掌握利息的计算方法。
2、通过自主探索,了解利息的计算方法。
教具学具:
课前搜集的有关储蓄、利息的信息,多媒体课件。
设计理念:
本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照
“一、二、一”的教学模式,即把教学分为:自学新知(10分钟)、检查释疑(20分钟)、课堂检测(10分钟)三个环节。
二、说学生
1、知识基础。①刚学过的百分数知识.学生总体上掌握得
较好,较牢,计算利息、保险费和税款是百分数应用的一种。所以学生较容易接受。②学生对储蓄、保险、纳税知识了解非常少,应做好课前准备。
2、学生的基础知识掌握情况还可以,同学之间的相互质疑,解疑的能力有一定的水平。但学生在分析信息、处理信息的能力较薄弱,学生从数学的角度提出问题、理解问题和解决问题的能力不强。以个人开展各种活动有些困难,我主要采取小组合作的方式,让学生探索、讨论、实践。
三、说教法
为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。整堂课通过提问式、点拨式、谈话法、分析法以及练习法引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。
四、说学法
根据高年级学生的心理特征和六年级教材的特点,在引导学生探究学习的过程中,抓住立体的已知条件量和未知量,通过对
话的形成入手,抓住教、学具的应用,展开交流、讨论、合作学习等方式,创设情境,唤起学生的注意,通过层层分析、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的含义,来分散教学难点。同时精心设计练习,让学生在整堂课中通过分析法观察法、比较法、练习法及合作学习的方式完成学习过程。教学中还要注重沟通师生的情感因素面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。
教学过程:
情景导入,引入课题
课的开始我很亲切的向学生提出求助:老师有5000元钱暂时不用,放在家里又觉得不太安全,哪位同学帮老师想个办法,如何更好的处理这笔钱?学生建议存入银行。这种以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系。起到了开动思维的作用,使学生乐于参与数学活动。(设计理念:使学生明白储蓄的第一个好处“安全”)同时我接着追问“把钱存入银行有什么好处呢?(设计理念:储蓄的第二个好处“获得利息”)板书课题:利息。
合作交流,自学新知
这是本节课的重点,所以安排了四个层次。
一、阅读老师提供的有关储蓄的资料,理解概念,并完成自学习题。
引导学生“通过阅读,哪位同学愿意给大家介绍一下储蓄的有关知识,同学们可以站起来自由发言,其他同学可做补充”(设计意图:学生通过阅读充分感知储蓄的益处之后,主动进行介绍,在不知不觉中学到了知识,体会到了数学就在我们身边。
课前预习提纲
【一】填空
1、今天我们学习了利息的有关知识。知道存入银行的钱叫做(),取款时银行多支付的钱叫做()。
2、()与()的百分比叫做利率。
3、利息的计算公式是()。
(设计意图:完成了第一个教学目标即:通过阅读资料及预习,使学生了解生活中储蓄的相关知识,培养学生的观察意识,分析能力,同时培养学生在调查预习活动中的收集、提取、整理、归纳信息的能力。
【二】小调查
1、你知道有哪些主要的存款方式吗?
2、你觉得到银行存款有什么好处?
检查释疑
教师出示教学提示卡检查学生课前调查情况
让学生结合具体的例子说出本金、利率以及存单上其他的相关信息。
(设计意图:这样在已有的生活经验的基础上出示一张真实的.存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。其次对于新知的处理,完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设思维的空间,探究的空间,交流的空间,注重让学生经历知识的产生过程,即培养学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)
3、交流讨论,了解利息的计算方法
(1)出示银行储蓄利率表,让学生通过比较,让学生得出,存期不同,利率不同,利息的多少与利率有关。
存款年限不同,所对应的利息也不同,这往往是学生容易忽视的地方,采用这种观察比较的方法,引导学生自己发现不同,要比教师反复叮嘱似的灌输印象深刻得多。
(2)让学生按要求计算到期后可得多少利息及到期后取回的钱。学生独立计算,然后通过交流汇报得出利息的计算方法。
设计理念:这是一个自主练习的环节,也是一个深化理解的过程,学生通过计算,解释算是的意义,等活动进一步深刻理解了利率、利息、本金的含义及之间的关系,自主探索出了利息的计算方法。
课堂检测
出示两个难度渐进的有关计算利息的题, 旨运用所学知识解决实际问题,提高学生的实际运用能力。
1、玲玲把300元钱存入银行,整存整取3年,年利率4.14%,到期时,玲玲到期时可得到多少利息?玲玲共可取回多少钱?
2、存入银行(两年后用)算一算他如何存取才能得到最多利息?
(设计理念:学生做学生讲的方式。课堂检测的结果由学生来打分,一来能够加深他们对利息计算公式的记忆,二来能让他们体验当老师的快乐,最后能让他们帮助有错的同学改错)
课堂总结
师:通过这一节课的学习,请同学们说一说你都有哪些收获?在利息的计算时应注意什么问题?
生:我们学习了有关储蓄的知识,知道了本金、利息和利率,以及它们三者之间的关系。特别是学会了求利息的方法:本金×利率×时间=利息。还知道了储蓄的意义。
五、说板书
板书设计:
百分数的应用(四)——利息
利息=本金×利率×时间
《百分数的应用》教案7篇 百分数的应用备课相关文章:
★ 百分数的意义和写法教学设计6篇(百分数的意义与写法课件)
★ 人教版六年级上册百分数的认识说课稿5篇(北师大六年级百分数的认识说课稿)
★ 教学反思《百分数的认识》12篇(人教版百分数的认识教学反思)
★ 《百分数的应用一》教学反思范文3篇(百分数的应用一课后反思)
★ 《百分数的意义和写法》教学设计3篇 百分数的意义一等奖教学设计