初二数学上册教案8篇 一年级数学上册教案

时间:2023-11-08 12:37:00 教案

  下面是范文网小编收集的初二数学上册教案8篇 一年级数学上册教案,以供参考。

初二数学上册教案8篇 一年级数学上册教案

初二数学上册教案1

  一、学生起点分析

  八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

  二、教学任务分析

  《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

  为此本节课的教学目标是:

  1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

  2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

  3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

  4.理解一次函数的代数表达式与图象之间的一一对应关系.

  教学重点是:

  初步了解作函数图象的一般步骤:列表、描点、连线.

  教学难点是:

  理解一次函数的代数表达式与图象之间的一一对应关系.

  三、教学过程设计

  本节课设计了七个教学环节:

  第一环节:创设情境引入课题;

  第二环节:画一次函数的图象;

  第三环节:动手操作,深化探索;

  第四环节:巩固练习,深化理解;

  第五环节:课时小结;

  第六环节:拓展探究;

  第七环节:作业布置.

  第一环节:创设情境引入课题

  内容:

  一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

  我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的'图象。

  目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

  效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

  第二环节:画正比例函数的图象

  内容:首先我们来学习什么是函数的图象?

  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

  例1请作出正比例函数y=2x的图象.

  第三环节:动手操作,深化探索

  内容:做一做

  (1)作出正比例函数y= 3x的图象.

  (2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

  请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

  (1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

  (2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?

  (3)正比例函数y=kx的图象有什么特点?

  明晰

  由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

  议一议

  既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

  因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

  4.3一次函数的图象:同步测试

  14若直线经过第一.二.四象限,则k.b的取值范围是( ).

  A.k>0,b>0 B.k>0,b<0

  C.k<0,b>0 D. k<0,b<0

  2.已知一次函数y=3-2x

  (1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

  (2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

  (3)x取何值时,y>0?

  3.已知一次函数y=-2x+4

  (1)画出函数的图象.

  (2)求图象与x轴、y轴的交点A、B的坐标.

  (3)求A、B两点间的距离.

  (4)求△AOB的面积.

  (5)利用图象求当x为何值时,y≥0.

  《函数的图象》课后练习

  1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

  A.y=1.5(x+12)(0≤x≤10)

  B.y= 1.5x+12(0≤x≤10)

  C.y=1.5x+10(x≥0)

  D.y=1.5(x-12)(0≤x≤10)

初二数学上册教案2

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:三角形内角和定理及其推论。

  教学难点:三角形内角和定理的证明

  教学用具:直尺、微机

  教学方法:互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的`新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个 什么角?

  问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?

  问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。

  4、变式训练,巩固提高

  根据例4 的度数的求法,思考如下问题:

  (3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?

  (4)当MN绕着点D旋转过程中, 会有怎样的变化?

  提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时, =

  变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,

  变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =

  变化4当直线MN与AC、BC的交点在C点时, =

  经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。

  5、小结

  通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。

  6、布置作业

  a、书面作业P43#3

  b、上交作业P42#16、17

初二数学上册教案3

  教学目标:

  知识与技能

  1、掌握直角三角形的判别条件,并能进行简单应用;

  2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型、

  3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、

  情感态度与价值观

  敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识、

  教学重点

  运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论、

  教学难点

  会辨析哪些问题应用哪个结论、

  课前准备

  标有单位长度的细绳、三角板、量角器、题篇

  教学过程:

  复习引入:

  请学生复述勾股定理;使用勾股定理的前提条件是什么?

  已知△ABC的两边AB=5,AC=12,则BC=13对吗?

  创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法、

  这样做得到的是一个直角三角形吗?

  提出课题:能得到直角三角形吗

  讲授新课:

  1、如何来判断?(用直角三角板检验)

  这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

  就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

  2、继续尝试:下面的.三组数分别是一个三角形的三边长a,b,c:

  5,12,13; 6,8,10; 8,15,17、

  (1)这三组数都满足a2 +b2=c2吗?

  (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

  3、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2,那么这个三角形是直角三角形、

  满足a2 +b2=c2的三个正整数,称为勾股数、

  4、例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角、工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

  随堂练习:

  1、下列几组数能否作为直角三角形的三边长?说说你的理由、

  ⑴9,12,15; ⑵15,36,39;

  ⑶12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41,AC=40,AB=9,则此三角形为xxxxxxx三角形,xxxxxx是角、

  3、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积、

  4、习题1、3

  课堂小结:

  1、直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2,那么这个三角形是直角三角形、

  2、满足a2 +b2=c2的三个正整数,称为勾股数、勾股数扩大相同倍数后,仍为勾股数、

初二数学上册教案4

  一、学生起点分析

  《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。

  二、教学任务分析

  教学目标设计:

  知识目标:

  1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;

  2、认识并能画出平面直角坐标系;

  3、能在给定的直角坐标系中,由点的位置写出它的坐标。

  能力目标:

  1、通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;

  2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

  情感目标:

  由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

  教学重点:

  1、理解平面直角坐标系的有关知识;

  2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;

  3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

  教学难点:

  1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;

  2、坐标轴上点的坐标有什么特点的总结。

  三、教学过程设计

  第一环节感受生活中的情境,导入新课

  同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5— 6),回答以下问题:

  (1)你是怎样确定各个景点位置的?

  (2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?

  (3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?

  在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?

  第二环节分类讨论,探索新知

  1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的'划分。

  学生自学课本,理解上述概念。

  2、例题讲解

  (出示投影)例1

  例1写出图中的多边形ABCDEF各顶点的坐标。

  3.2平面直角坐标系:课后练习

  一、选择题(共9小题,每小题3分,满分27分)

  1、若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()

  A、第四象限B、第三象限C、第二象限D、第一象限

  【考点】点的坐标。

  【专题】计算题。

  【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限。

  【解答】解:∵点A(﹣2,n)在x轴上,

  ∴n=0,

  ∴点B的坐标为(﹣1,1)。

  则点B(n﹣1,n+1)在第二象限。

  故选C。

  【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负。

  2、已知点M到x轴的距离为3,到y轴的距离为2,且在第三象限。则M点的坐标为()

  A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)

  【考点】点的坐标。

  【分析】根据到坐标轴的距离判断出横坐标与纵坐标的长度,再根据第三象限的点的坐标特征解答。

  【解答】解:∵点M到x轴的距离为3,

  ∴纵坐标的长度为3,

  ∵到y轴的距离为2,

  ∴横坐标的长度为2,

  ∵点M在第三象限,

  ∴点M的坐标为(﹣2,﹣3)。

  故选D。

  【点评】本题考查了点的坐标,难点在于到y轴的距离为横坐标的长度,到x轴的距离为纵坐标的长度,这是同学们容易混淆而导致出错的地方。

  3.2平面直角坐标系同步测试题

  1.点A(3,—1)其中横坐标为XX,纵坐标为XX。

  2.过B点向x轴作垂线,垂足点坐标为—2,向y轴作垂线,垂足点坐标为5,则点B的坐标为。

  3.点P(—3,5)到x轴距离为XX,到y轴距离为XX。

初二数学上册教案5

  教学目标:

  知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。

  过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。

  情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。.

  教材分析:

  本节教材首先让学生动手做一做解两个不等式;之后让大家谈谈解一元一次不等式与解一元一次方程的异同点;最后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。

  教学重点:

  1、含有分母的.一元一次不等式的解法

  2、用不等式表达数量之间的不等关系

  3、确定不等式的整数解

  教学难点:

  1、解含有分母的一元一次不等式时,去分母这一部的准确性。

  2、不等式的整数解的确定

  教学流程:

  一、直接引入

  我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢今天我们来探究一下。

  二、探究新知

  (一)解一元一次方程和解一元一次不等式的异同点

  1、出示问题,让学生板演

  找两名同学,分别解下面两个问题:

  (1)解方程:﹦

  (2)解不等式:

  2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。

  3、师生交流。

  相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母去括号移项,合并同类项化系数为1。

  不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。

  4、运用新知。

  将下列不等式中的分母化去:

初二数学上册教案6

  教学目标

  1.会解简易方程,并能用简易方程解简单的应用题;

  2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;

  3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

  教学建议

  一、教学重点、难点

  重点:简易方程的解法;

  难点:根据实际问题中的数量关系正确地列出方程并求解。

  二、重点、难点分析

  解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

  判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

  列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

  三、知识结构

  导入方程的概念解简易方程利用简易方程解应用题。

  四、教法建议

  (1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

  (2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的.复习。

  (3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

  (4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

  五、列简易方程解应用题

  列简易方程解应用题的一般步骤

  (1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.

  (2)找出能够表示应用题全部含义的一个相等关系.

  (3)根据这个相等关系列出需要的代数式,从而列出方程.

  (4)解这个方程,求出未知数的值.

  (5)写出答案(包括单位名称).

  概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.

初二数学上册教案7

  1、教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

  难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

  2、教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的`一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

  一、素质教育目标

  (一)知识教学点

  1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。

  2、了解四边形的不稳定性及它在实际生产,生活中的应用。

  (二)能力训练点

  1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

  2、通过推导四边形内角和定理,对学生渗透化归思想。

  3、会根据比较简单的条件画出指定的四边形。

  4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

  (三)德育渗透点

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

  (四)美育渗透点

  通过四边形内角和定理数学,渗透统一美,应用美。

  二、学法引导

  类比、观察、引导、讲解

  三、重点难点疑点及解决办法

  1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

  2、教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

  3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、四边形模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

  第一课时

  七、教学步骤

  【复习引入】

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。

  【引入新课】

  用投影仪打出课前画好的教材中P119的图。

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

  【讲解新课】

  1、四边形的有关概念

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形。

  (2)要与三角形类比。

  (3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

  2、四边形内角和定理

  教师问:

  (1)在图4—3中对角线AC把四边形ABCD分成几个三角形?

  (2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?

  (3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。

  我们知道,三角形内角和等于180,那么四边形的内角和就等于:

  ①2180=360如图4

  ②4180—360=360如图4—7。

  例1已知:如图48,直线于B、于C。

  求证:(1) (2) 。

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

  【总结、扩展】

  1、四边形的有关概念。

  2、四边形对角线的作用。

  3、四边形内角和定理。

  八、布置作业

  教材P128中1(1)、2、 3。

  九、板书设计

  四边形有关概念

  四边形内角和

  例1

  十、随堂练习

  教材P122中1、2、3。

初二数学上册教案8

  一、学生情况分析及改进提高措施:

  学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。

  在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。

  具体提高措施是:

  1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的`数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。

  2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。

  3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。

  4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。

  二、本册教材分析

  本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:

  1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。

  2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。

  3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。

  三、总体教学目标:

  (一)、知识与技能

  1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。

  2.学平面图形的周长,会进行周长的计算。

  (二)、实践能力培养

  1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。

  2.结合生活情境,感受并认识质量单位。

  3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。

  (三)、情感与态度

  1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。

  2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。

  教研专题:

  创设课堂学习情境,有效培养创新意识。

  个人专题:

  在情境中培养学生的自主学习意识,提高课堂的有效性。

初二数学上册教案8篇 一年级数学上册教案相关文章:

初二数学上册教案9篇 初中八年级数学上册教案

初二数学上册教案9篇(初二数学上册教学设计)

初二数学上册教案3篇(初二上册数学教学)

新人教版初二数学上册教案3篇 人教版初二上学期数学教案