下面是范文网小编分享的初二数学一次函数教案3篇 八年级数学一次函数教案,供大家参考。
初二数学一次函数教案1
学习目标:
1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
2、能熟练应用平行线的性质公理及定理。
二、试一试
自学指导:平行线性质公理:两直线平行,同位角相等
1、 思考下列各题,你能利用平行线性质公理解决它们吗?
2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。
(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2
由此得平行线性质定理1:
(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°
由此得平行线性质定理2:
三、练一练
1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b
(1)求证:a∥c
(2)请将(1)题证得的结论用一句话总结出来
2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。
五、记一记
1、两直线平行的性质公理及两个性质定理;
2、平行线的性质补充结论
(1)垂直于两平行线之一的直线必垂直于另一条直线
(2)夹在两平行线之间的平行线段相等;
(3)两条平行线间的距离处处相等;
(4)经过直线外一点,有且只有一条直线和已知直线平行;
(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补
B组:请在补充结论中选择你感兴趣的进行证明:
初二数学一次函数教案2
一、读一读 学习目标:1、熟练证明的基本步骤和书写格式;
2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。
二、试一试
自学指导:平行线判定公理: 同位角相等,两直线平行
1、自学教材P229-231,学完后合上课本完成下列各题:
(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b
由此得,平行线判定定理1: ;
(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b
由此得,平行线判定定理2: .
三、练一练
1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决
2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°
求证:a∥b 你有几种证明方法?请选择其中两种方法来证明
五、记一记:证明命题的一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;
(4)检查证明过程是否正确完善。
初二数学一次函数教案3
一、读一读
学习目标:1、掌握“三角形内角和定理”的证明及其简单应用;
2、体会思维实验和符号化的理性作用
二、试一试
自学指导:
1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里 和定理,你能进行论证么?
2、已知:如右图所示,△ABC
求证:∠A+∠B+∠C=180°
思考:延长BC到D,过点C作射线CE∥BA,这样就相
当于把∠A移到了 的位置,把∠B移到 的位置。
注意:这里的CD,CE称为辅助线,辅助线通常画成虚线
证明:作BC的延长线CD,过点C作射线CE∥BA,则:
3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!
三、练一练
1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。
2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC
求证:∠ADE=50°
3、如图,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。
4、证明:四边形的内角和等于360°
初二数学一次函数教案3篇 八年级数学一次函数教案相关文章:
★ 初中数学教案模板空白表格下载共3篇 教学设计模板空白表格
★ 初中数学北师大教案3篇(北师大初中数学教案大全.doc)
相关热词搜索:初二数学教案 初中数学教案