圆的面积教案【合集13篇】

时间:2023-11-22 12:19:30 教案

圆的面积教案 篇1

  教学目标:

  1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。

  3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。

  教学重难点:

  圆面积公式的推导。

  教学关键:

  弄清圆与转化后的近似图形之间的关系。

  教具:

  多媒体计算机。

  学具:

  每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。

  教学过程:

  一、复习旧知、设疑导入

  同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

  微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

  二、动手操作、探索新知

  1、通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形,直接度量圆面积,观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

  初步猜想:圆的面积相当于r2的3倍多一些。

  3个小正方形由此看出,要求圆的.精确面积通过度量是无法得出的。

  2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

  3、学生小组合作。

  (1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:

  ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

  ②圆和近似的长方形有什么关系?(形状变了,但面积相等)

  ③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

  ④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

  ⑤你能推导出圆面积计算公式吗?

  (2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

  (3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

  4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

  三、看书质疑、自学例3,注意书写格式和运算顺序

  四、运用新知,解决问题

  1、一个圆的半径是5厘米,它的面积是多少平方厘米?

  2、看图计算圆的面积。

  3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?

  4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?

  (1)可测圆的半径,根据S=πr2求出面积。

  (2)可测圆的直径,根据S=π(d/2)2求出面积。

  (3)可测圆的周长,根据S=π·(c/2π)2求出面积。

  五、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  六、布置作业

  七、板书设计

  圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径

  S=πr×r;S=πr2

圆的面积教案 篇2

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点

  圆面积计算

  教学难点

  公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π ÷π ÷π

  2.已知圆的半径是分米,它的周长是多少?

  3.一个长方形的长是米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:

  再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr

  2 3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)

  教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr

圆的面积教案 篇3

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1、计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2、完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么?意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇4

  教学内容:

  冀教版六年级上册第四单元

  教学目标:

  1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

  2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

  3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

  4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

  教学重点:

  在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

  教学难点:

  能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

  教学流程:

  一、炫我两分钟

  大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在与之间。之后我们在计算中为了方便,一般只取它的近似值,即

  同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于的口算如何。

  出示口算题目。

  随机评价。

  相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

  二、组内交流,完善梳理

  教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

  【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

  三、小组合作交流。

  组内交流尝试小研究。

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流。

  2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

  3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

  4、再次确认发言顺序,准备全班交流。

  【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

  四、班级交流,提升梳理

  1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

  2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

  【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

  3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

  师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

  【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

  五、应用拓展

  结合练习做相应题目,巩固易错易混知识。

  (一)基础题

  1、判断下面各题是否正确,对的打“√”,错的打“×”。

  (1)计算直径为10毫米的圆的面积的列式是×(10÷2)。 ( )

  (2)半径为2厘米的圆的周长和面积相等。 ( )

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是平方米。(栓绳处不计算在内) ( )

  2、一个圆的周长是25、12米,它的面积是多少?

  3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

  (二)拓展提高

  1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

  2、公园里有一圆形花坛的周长是米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

  3. 一辆自行车的轮胎的外直径是米,每分转50周,这辆自行车每小时行驶多少千米?

  【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

  六、个人整理

  经过本课时的学习,你有哪些收获呢?

  【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

圆的面积教案 篇5

  教学目标

  (1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  (2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。

  (3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。

  教学重难点

  教学重点:组合图形的认识及面积计算。

  教学难点:对组合图形的分析。

  教学工具

  多媒体课件,各种基本图形纸片

  教学过程

  一、创设情境,谈话引入

  同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)

  师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)

  师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究

  1、教师出示例3的两幅图并出示自学提示出示自学提示:

  (1)上面两幅图有什么不同之处?

  (2)右图中的正方形的对角线和圆得直径有什么关系?

  (3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?

  2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动

  生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。

  生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=×12=(m2 ) 4-=0、86(m2 )左图:圆的面积减去正方形的面积

  ( 1/2 ×2×1)×2=2(m2 ) ×12=(m2 ) -2=(m2 )

  师:同学们做的.很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:

  左图;(2r)-r =

  右图:r-( 1/2 ×2r×r)×2=r当r=1m时,和前面的结果完全一致

  答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是m。

  四、总结引导,知识生成这节课你有什么收获?

  师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业

  七、作业布置P73第10、11、

  课后小结

  这节课你有什么收获?

  课后习题

  1、出示教材P70做一做

  2、完成教材P72第9题

  板书

  含有圆的组合图形的面积

  左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )

  S圆=×12=(m2 ) ×12=(m2 )

  4-=(m2 ) -2=(m2 )

圆的面积教案 篇6

  教学内容:课本第94、95页例3 、例4。

  教学目的:

  1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  3、培养学生动手操作能力和逻辑推理能力。

  教学重点:圆面积计算公式。

  教学难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。

  教学过程:

  一、复习。

  1.圆的有关概念

  2.什么叫长方形的面积?

  3.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  ①拼成的图形近似于什么图形?

  ②原来圆的面积与这个长方形的面积是否相等?

  ③长方形的长相当于圆的哪部分的长?

  ④长方形的宽是圆的哪部分?

  长方形的面积=长*宽

  圆的面积=c÷2*r

  =2∏r÷*r

  =∏r*r

  =∏r2

  用S表示圆的面积,那么圆的面积可以写成:S=∏r2

  3.圆面积公式的应用。

  出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =*102

  =*100

  =314(平方厘米)

  答:它的面积是314平方厘米。

  例题2:一个圆的直径是40米,它的面积是多少平方米?

  40÷2=20(米)

  *202

  = *400

  = 1256(平方米)

  答:这个圆的面积是1256平方米。

  三、巩固练习。

  1.半径2分米,求圆的面积。

  2、圆的周长是分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)

  3、绳长10米,问小狗的活动面积有多大?

  四.发散思维:如下图:S正方形=3平方厘米,S圆=?

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。

  五、作业。

  六、课后反思:

圆的面积教案 篇7

  教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:理解和掌握圆面积的计算公式的推导过程

  教学难点:圆面积计算公式的推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的`面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇8

  小学数学第十一册第四单元圆练习题

  一、填空。

  (1) 写出下面各题的最简整数比。

  ①圆的半径和直径的比是( ),圆的周长和直径的比是( )。

  ②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。

  (2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。

  (3)圆的周长是分米,它的面积是( )平方分米。

  (4)圆的半径扩大3倍,它的面积就扩大()。

  (5)一个圆的周长、直径和半径相加的和是厘米,这个圆的直径是()厘米;面积是()。

  (6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

  (7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

  (8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

  7、用一根长厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。

  二、判断题。正确的画“√”,错的.打“×”,并订正。

  (1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

  (2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )

  (3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )

  (4)半圆的周长就是这个圆周长的一半。( )

  (5)求圆的周长,用字母表示就是C=πd或C=2πr。( )

  三、选择题。将正确答案的序号填在括号里。(8%)

  (1)画圆时,固定的一点叫()。

  ① 顶点② 圆心 ③ 字母O

  (2)从圆心到圆上任意一点的()叫做半径。

  ① 直线② 射线 ③ 线段

  (3)周长相等的图形中,面积最大的是()。

  ① 圆 ②正方形③长方形

  (4)圆周率表示()

  ① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系

  (5)半径为r的圆面积等于()。

  ① πr2 ② 2πr2 ③πd

  (6)圆的直径长度决定圆的()。

  ① 位置② 大小 ③ 形状

  (7)圆的半径扩大3倍,它的面积就扩大()。

  ① 3倍 ② 6倍 ③ 9倍

  (8)已知圆的周长是分米,圆的半径是()。

  ① 17分米②分米 ③ 34分米

  四、应用题。

  (1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?

  (2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?

  (3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)

  (4)一个农民新开挖一个圆形水池,水池的周长是米,求水池占地的面积是多少平方米?

  (5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?

  (6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?

  (7)公园里有一个圆形花坛,周长米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?

  (8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?

  小学数学六年级(上册)圆测试题 (上)

  一、填空

  1、( )决定圆的大小,( )决定圆的位置。

  2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,

  3、( )是圆中最长的线段。

  4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。

  5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。

  6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )

  7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。

  8、π,14,,从小到大排列是()。

  9、圆的周长总是直径()倍,是半径的( )倍。

  10、画出一个圆的周长是厘米,那么圆规两脚间的距离是( )。

  11、在同一个圆里,直径和半径的关系用字母表示是()。

  12、一个半圆,半径是r,它的周长是( )。

  二、判断

  1、直径是半径的2倍。

  2、两端都在圆上的线段,叫半径。

  3、半径是2厘米的圆周长和面积相等。

  4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。

  5、如果圆的直径是d,它的面积是 πd2 。

  6、圆周率就是

  7、半圆形的周长就是圆周长的一半。

  8、直径是圆的对称轴。

  9、一个圆的面积和一个正方形的面积相等,它们的周长也相等

  10、半圆形的面积就是圆面积的一半

  三、应用

  1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。

  (1)、栅栏的长度是多少?

  (2)、这条小路的面积是多少?

  2、 一根 米的绳子,绕树10圈还长米,树干横截面的面积是多少?

  3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)

  4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?

  5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?

  6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?

  7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?

  8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?

  9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?

  10一个半圆的周长是厘米,这个半圆的半径是多少,面积是多少?

  11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?

  12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是米。这个游泳池占地面积是多少?

圆的面积教案 篇9

  教学目标:

  1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

  2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

  3、培养学生的逻辑思维能力。

  教学重点:培养综合运用知识的能力。

  教学难点:培养综合运用知识的能力。

  教学过程:

  一、复习。

  1、口算:

  2

  267

  2、思考:

  (1)圆的周长和面积分别怎样计算?二者有何区别?

  (2)求圆的.面积需要知道什么条件?

  (3)知道圆的周长能够求它的面积吗?

  二、新课。

  1、教学练习十六第3题

  小刚量得一棵树干的周长是,这棵树干的横截面积是多少?

  已知:c=厘米s=r2

  r:()

  =6.28=

  =20(厘米)=1256(平方厘米)

  答:这棵树干的横截面积1256平方厘米。

  3、教学环形面积。

  (1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  已知:R=6厘米r=2厘米求:s=?

  622

  ==

  =(平方厘米)=(平方厘米)

  -=(平方厘米)

  第二种解法:(62-22)=(平方厘米)

  (2)小结:环形的面积计算公式:

  S=R2-r2或S=(R2-r2)

  (3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  三、巩固练习。

  1、学校有个圆形花坛,周长是米,花坛的面积是多少?

  选择正确算式

  A、(2)

  B、()

  C、

  2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

  3、课堂小结。

  (1)这节课的学习内容是什么?

  (2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

  已知半径求面积S=r2

  已知直径求面积S=()2

  已知周长求面积S=()2

  (3)环形面积:S=(R2-r2)

  四、作业

  课本P70第4、6、7题。

  教学追记:

  本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

圆的面积教案 篇10

  教学内容:

  教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:

  进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:

  能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇11

  学习内容:

  圆的面积(教材16、17、18、页)

  学习目标:

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。

  学习重点:

  经历圆面积计算公式的推导过程,掌握圆面积的计算公式。

  学习难点:

  了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。

  教学准备:

  等分好的圆形纸片

  学习过程:

  一、自主复习

  写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。

  二、自主预习

  (一)感知圆的面积。

  任意画一个圆,用彩笔涂出它的面积。

  我知道:圆所占平面的()叫做圆的面积。

  (二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?

  (三)估一估

  请你估计半径为5米的圆面积大约是多大?

  先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。

  三、小组交流自主预习部分

  四、自主探索圆面积公式

  1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)

  2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。

  拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?

  第一步:把圆平均分成8份,拼一拼,拼成了一个近似的()

  第二步:把圆平均分成16份,拼一拼,拼成了一个近似的()

  第三步:把圆平均分成32份,拼一拼,拼成了一个近似的()

  如果分的分数越(),拼成的图形就越接近于()。)比较剪拼前后的图形,发现()变了,()没变。

  3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的(),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()

  4、公式的推导:

  平行四边形面积=底×高

  圆面积=

  1、还可以怎样拼接成长方形动手试一试并完成下面的填空

  把圆转化成长方形后,长方形的长相当于圆的`(),宽相当于圆的()。因为长方形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()

  长方形的面积=长×宽

  圆面积=用字母表示圆面积公式:

  五、小组交流

  1、圆面积公式的推导过程

  2、如何计算圆的面积

  六、全班交流教师总结

  七、学习检测

  1、填空。

  求圆的面积必须知道()利用公式S=()来计算。

  2、解决书16页上面喷水池转一周浇灌草坪面积?

  3、计算,求圆的面积:(1)r=2cm(2)d=10cm

  4、一个圆形花坛的周长是分米,它的面积是多少平方分米?

  八、交流展示

  九、回顾反思

  通过今天的学习,你学会了什么?还有那些疑惑?

圆的面积教案 篇12

  教学内容:

  课本例3,第115页练习二十七的第1~5题。

  教学目的

  通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  重点:

  圆面积计算公式。

  难点:

  圆面积计算公式的推导。

  教具、学具:

  圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程:

  一、复习。

  1.口算:

  2.已知圆的半径是分米,它的周长是多少?

  3.一个长方形的长是米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的长?

  长方形的宽是圆的.哪部分?

  长方形的面积=长×宽

  圆的面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案 篇13

  一、 学情分析

  五年级共有学生46人,中等生20人,优秀生15人。本班学生历来的课外作业完成得不够理想,大多数学生书写状况缭草;上课用心听讲、积极大胆发言的的人不多;少部分学生的基础知识很差,上课走神等。根据本班学生的特点,制订相应的'教学措施,力争本期有较大的提升。

  二、教材分析

  这一册教材内容包括:观察物体(三)、因数与倍数、长方体和正方体、分数的意义和性质、图形的运动(三)、分数的加法和减法、折线统计图、数学广角和综合与实践活动等。

(一)数与代数

  第二单元 因数与倍数;第四单元 分数的意义与性质;第六单元 分数的加法与减法。

(二)图形与几何

  第一单元 观察物体;第三单元 长方体与正方体;第五单元 图形的运动(三)。

(三)统计与概率

  第七单元 折线统计图。

(四)数学思想方法

  第八单元 数学广角——找次品

(五)数学综合运用

  1、探索图形;2、打电话。

  本册修订后的教材,既有原实验教材的主要特点,又呈现出一些新的特色。

  1、改进因数与倍数教学的编排,体现数学教学改革的新理念,培养学生的数学素养。

  2、改进熟悉分数的编排,注意沟通知识间的联系,加强对分数意义的理解。

  3、提供丰富的空间与图形教学内容,注重动手实践与自主探索,促进学生空间观念的发展

  4、加强统计知识的教学,发展学生的统计观念,逐步形成进行思考问题的思维习惯。

  5、有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。

  6、情感、态度、价值观的培养渗入渗出于数学教学中,用数学的魅力和学 习的收获激发学生的学习兴趣与内在动机

  三、教学目标

  1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行分数与小数的互化,能够比较熟练地进行通分和约分。

  2、掌握因数与倍数、质数和合数、奇数和偶数等概念,以及2、 3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数。

  3、理解分数加减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。

  4、知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。

  5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。

  6、通过观察立体图形,能正确辨认从不同方向平面图或能根据从正面、左面、上面观察到的平面图形还原立体图形。

  7、认识单式和复式折线统计图,能根据需要选择合适的统计图表示数据。

  8、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  9、体会解决问题策略的多样性及运用优化的思想方法解决问题的有效性,感受数学的魅力,形成生活中有数学的意识,初步形成观察、分析及推理的能力。

  四、教学重难点

  因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计。

  五、教学措施

(1)创设愉悦的教学情境,激发学生学习的兴趣。

(2)提倡学法的多样性,关注学生的个人体验。

(3)课堂训练形式的多样化,重视一题多解,从不同角度解决问题。

(4)加强基础知识的教学,使学生切实掌握好这些基础知识。

(5)学生能预习教材,提出知识重点,自己是通过什么途径理解的,还有哪些疑问。能通过查阅资料找出解决问题的方法。

(6)教师作为课堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操作能力和发散思维能力。

(7)利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发, 自己找出解决问题的方法,体验学习数学的快乐。

(8)培养学习数学的兴趣和自信心,使每位学生的能力有所提高。

(9)体现学生的主体作用,让学生爱学、会学,教学生掌握学习方法。

(10)教学与实践活动相结合因材施教,每一堂课教学内容的设计都根据教学目标和学生的基础上,创建教学的问题情境,属于符合学生认知规律的教学过程。

  六、后20%学生转化计划:

  1、原因分析:

  本身资质差,基础薄弱,理解能力差,不能将数学结合生活。

  有的学生很聪明但是很自负,不认真,贪玩。

  2、措施:

(1)平时多照顾他们。

(2)加强基础训练。

(3)加强学习习惯、行为的培养。

(4)提高他们学习的信心、兴趣。

圆的面积教案【合集13篇】相关文章:

人教版圆的面积教学设计5篇

圆的面积教案5篇

《圆的面积》教学设计与反思7篇 圆的面积教学反思教后反思

圆的面积教案6篇

人教版圆的面积教案4篇(人教版圆的面积的教学教案)

小学数学圆的面积的教案9篇 小学数学圆的面积优秀教案

圆的面积教案3篇

圆的面积教学反思11篇(圆的面积一教学反思)

圆的面积教案范文5篇(《圆的面积》教学设计)

《圆的面积》教学反思8篇 圆的面积教学反思简短