下面是范文网小编整理的《小数的意义》的教案13篇 小学数学《小数的意义》教案,以供参考。
《小数的意义》的教案1
复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)
复习要求:
1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。
2.使学生掌握用四舍五人法取积、商是小数的'近似值。复习重点:进一步提高计算的正确率和熟练程度。
复习过程:
一、基本练习
1.口算。05。381。40。20。156800。58。50。21。250。83。910
3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数
10。395
2。047
0。9292
二、复习指导
1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()
③8。40。4表示()④8。44表示()(2)思考并回答。
①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。
(1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125
①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?
②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。
三、课堂练习
1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03
0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95
先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。
2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?
生独立审题,分析数量关系并列式计算。
四、作业
练习九第1、2题
《小数的意义》的教案2
教学目标:
1.通过练习体会小数所表示的意思,理解小数的意义。
2.通过练习理解和掌握小数意义。
教学重点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学难点:
通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:
学生、老师准备计数器、小黑板
教法学法:
小组合作交流学习法、练习法
教学过程:
一、复习导入新课。(小黑板出示)
2角5分 = ( )元
9分米 =( )米
7分 =( )元
135克 =( )千克
3元4角 =( )元
3分米2厘米 =( )分米
二、自学后完成下面问题
1.一个小数整数部分的最低位是( )位,计数单位是( ),小数部分最高位是( ),计数单位是( ),这两个单位间的.进率是( )。
2.0.78的计数单位是( ),它含有( )个这样的计数单位。
3.由2个十、7个0.1和5个0.001组成的数写作:( ),
读作:( )
4.连线题: 0.008 0.8 0.08
零点八 零点零八 零点零零八
5.判断
(1)8.76读作:八点七十六。( )
(2)4.32是三位小数。( )
(3)5.961中的6在百分位上,表示6个0.01。( )
6.一个小数,它的百位和百分位上都是2,其余各位都是零,这个小数写作( )
7.0.0302用分数表示是( )
8.下面几个数字中的9分别表示什么意义?
9.26 ( )
0.926( )
0.296( )
0.269( )
三、作业布置。
1、作业本做练一练2、3题
2、完成相应配套练习。
板书设计:
小数的意义(二)
《小数的意义》的教案3
复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)
复习要求:
1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。
2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。
复习重点:小数的混合运算和简便计算的正确率及熟练程度。
复习过程:
一、基本训练
练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63
10-1。8-2。20。46280。1254。80。20。50。71。42。430
0。30。152根据学生情况限时做在课本上,集体订正。
二、复习指导
1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14
(1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。
2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?
(2)学生独立简算。(指4名学生板演。)(3)集体订正。
三、课堂练习
1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。
2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价
篮球只78。6元
排球3只145。20元
总计金额302。40元
(1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的.单价?并选代表发言。(2)学生填写,教师巡视。
(3)集体订正。
四、攻破难题
1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?
分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的关系,用被除数3。6除以商2。4,得到除数是1。5。
2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?
分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:
(20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业
练习九第6题、思考题。
《小数的意义》的教案4
教材位置
人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。
教学目的
1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。
2、培养学生的迁移、类推能力。
3、渗透数学“来源于生活,又运用于生活”。
教具准备
多媒体课件。
学具准备
草稿纸若干
教学重点
相同数位对齐
教学难点
小数点对齐
教学方法
探究式学习法
学情分析
学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。
学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。
整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。
学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。
教学过程
一、复习。
1、谁的竖式最漂亮,计算更准确。
4235+5478 3251+438
7621+37543 4320+317
小组内完成后,讨论下列问题。
1列竖式时要注意什么?怎样列竖式更快捷?
2计算时要注意什么?
2、整数加法的意义是什么?它的计算法则是什么?
二、激趣导入。
1、提问:夏天到了,你最喜欢吃什么水果?
2、听故事,做数学。
明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?
3、抽一生列式板演,全班齐练。
4、继续听,继续算。
后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?
你还会求出他们一共重多少千克吗?
5、揭示课题:
小数加法的意义和计算法则
三、新授。
1、小数加法的意义。
同整数加法一样,都是把两个数合并成一个数的运算。
2、小数加法的计算法则。
刚才有的`同学说会,现在各小组一齐完成竖式计算并讨论以下问题:
(1)小数与整数比较,有什么特征?
复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。
为小数加法的意义和法则的类推作理论铺垫。
设问起疑,引起学生的兴趣,提高学生的注意力。
体现数学来源于生活,生活中到处存在数学问题。
进一步复习巩固单位换算的知识,为引出课题作准备。
类比推理的运用,训练学生知识迁移能力。
(2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的
目的?
(3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?
3、指导看书P111。
4、试练。
完成P111做一做并回答问题。
四、延伸拓展。
1、你会用两种方法计算吗?
1元8角7分+3角2分
7角6分+3元4角4分
2、听故事,列算式:
小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?
五、巩固训练。
4235+5748 37251+438
4.235+5.748 3.7251+4.38
42.35+5.748 37.251+4.38
4.235+57.48 372.51+4.38
六、板书设计。
小数加法的意义和计算法则
3 7 3 5克 3. 7 3 5千克
+ 4 0 7 5克 + 4. 0 7 5千克
7 8 1 07. 8 1 0千克
7810克=7.81千克 3.735+4.075=7.81(千克)
在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。
初步学会对加法法则的运用。
加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。
训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。
加深对计算法则的理解,能运用法则准确计算。
《小数的意义》的教案5
一、教学目标
(一)知识与技能
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点
教学重点:理解小数的意义,理解小数的`计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
三、教学准备
米尺、彩带、磁条。
四、教学过程
(一)创设情境,导入新课
1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
《小数的意义》的教案6
[教学内容] 小数的意义(第2-5页)
[教学目标]
1、结合具体情境,体会生活中存在着大量的小数。
2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。
[教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。
[教学准备] 学生、老师准备计数器。
[教学过程]
一、生活中的小数
(事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的价格用到小数外,还在哪些地方见到过小数。
结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。
二、小数的意义
1、自学小数的意义(看书第3页)
2、小组交流
3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。
4、以1米为例结合具体的数量理解小数
把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。
5、归纳小数的意义
通过学生的讨论归纳出小数的意义。
三、小数部分的数位及读写:
1、小数部分的数位及数位间的进率
先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。
在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。
2、小数的`读写
让学生试读,注意提醒学生小数部分的读法与整数部分不同。
3、写一写、读一读、说一说。
对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。
四、数学游戏:
通过数和形的对应,加深对各数位间关系的理解。
五、作业:
第5页1-4
[板书设计]
小数的意义
千 百 十 个 十 百 千
位 位 位 位 ?分 分 分 数位
位 位 位
整数部分 小数点小数部分
《小数的意义》的教案7
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的`介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
《小数的意义》的教案8
教学目标:
1、借助计数器,掌握小数的数位。
2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。
3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:
掌握小数的数位和计数单位。
教学难点:
掌握小数的基本性质。
教学准备:
课件、计数器
教学过程:
一、复习旧知,导入新课
过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?
(课件出示)1、填空。
3写成小数是( ) 10
660.56表示()写成小数是() 100
6780.625表示( )写成小数是( ) 10000.4表示( )
2、读一读下面一段话中的'小数。
北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。
师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))
二、动手操作,探究新知
1、认识数位。
出示计数器,师问:这个计数器有什么特点?
学生观察后汇报
师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。
课件出示拨数情况,引导学生认识:
“22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.
师提问:小数点右边第2个“2”在百分位上,它表示2个
引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100
师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?
学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000
师引导学生再次思考:小数点左边两个2分别表示多少?
学生先独立思考,再小组内交流,最后集体汇报。
2、认识计数单位及计数单位之间的进率。
师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?
课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:
小数点右边第一位是十分位,计数单位是十分之一(0.1);
小数点右边第二位是百分位,计数单位是百分之一(0.01);
小数点右边第三位是千分位,计数单位是千分之一(0.001);
小数点右边第四位是万分位,计数单位是万分之一(0.0001);
课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?
学生讨论后汇报交流,师生共同总结:
相同点:相邻计数单位间的进率都是10.
不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——0.1.
师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。
三、巩固运用,拓展提升
1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?
引导学生讨论后交流汇报。
2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?
让学生自主涂色,并汇报:0.6和0.60一样大。
师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3、即时练习。
课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?
3.203.09 6.06 50.44 5.700 200.04
四、课堂小结
通过这节课的学习,我们学会了哪些知识?
板书设计:
《小数的意义》的教案9
教学内容:
P32-33
教学目标:
1、在升生活情境中了解小数的产生,体会数学与生活的联系,了解数学的价值,增强对数学的理解和应用数学的信心。
2、探究小数与分数、整数的内在联系,理解小数的意义。
3、通过分析、对比、概括、小结培养学生的思维能力。
教学重难点:
在学生初步认识一位小数、两位小数的基础上,进一步把认识范围扩展到三位小数,分母是10,100,1000的的分数,写成小数是几个0.1,几个0.01,几个0.001,并了解小数的计数单位及单位间的进率。
教学准备:
PPT,小软尺,习题纸。
教学过程
一、谈话引入新课,激发学习兴趣
师:同学们,老师给大家准备了一些关于小数和分数的小书签,我想把它们送给上课积极发言的孩子,想得到它吗?想得到就积极发言吧。
二、创设情境,导入新课
1、同学们在前面的学习中,我们已经初步的认识了小数和分数,这节课,老师想让大家用小数表示自己所测量的物体,请大家拿出大家准备好的软尺,请第1组的同学测量课桌的长度;请第2,3组的同学测量笔袋的长度;请第4,5组的同学测量数学书的厚度,请将你的测量结果记录在老师发给你的纸里。
2、每生测量活动。
3、每组派代表汇报测量结果。
学生汇报预测:
学生1:我测量的课桌的长度是0.6米。
学生2:我测量的笔袋的长度是0.11米。
学生3:我测量的数学书的厚度是0.01米。
4、展示学生的汇报结果,有质疑的请举手。
5、根据同学们的测量结果你有什么发现?(都是小数)
6、在平常的生活中你还见过哪些这样的小数?请举例说明。
生例举一些常见的小数,师补充一些常见的小数。观察这些数你有什么发现?
根据学生的回答,师小结:在进行测量和计算时往往不能正好得到整数,这时候通常用小数来表示。
这节课我们就来学习《小数的意义》。
二、尝试探究,理解意义
1、认识一位小数
教师:出示一米长的纸条,把它平均分成10份,取其中的一份是多少分米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1分米,分数表示:米,用小数表示:0.1米。
师:取其中的3份呢?取其中的6份呢?生独立思考。
生汇报:取其中的3份是3分米,分数表示:米,用小数表示:0.3米。
取其中的6份是6分米,分数表示:米,用小数表示:0.6米。
2、认识两位小数
我们都知道了一位小数表示十分之几,那么老师现在把这一米长的纸条平均分成100份,取其中的一份是多少厘米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1厘米,分数表示:米,用小数表示:0.01米。
师:取其中的40份呢?取其中的75份呢?生独立思考。
生汇报:
取其中的40份是40厘米,分数表示:米,用小数表示:0.40米。
取其中的75份是75厘米,分数表示:米,用小数表示:0.75米。
3、认识三位小数
我们都知道了一位小数表示十分之几,两位小数表示一百分之一,那么老师现在把这一米长的纸条平均分成1000份,取其中的一份是多少毫米?写成分数是多少米?写成小数的多少米?说出你的想法。
生汇报:取其中一份1毫米,分数表示:米,用小数表示:0.001米。
师:取其中的59份呢?取其中的125份呢?
生汇报:
取其中的59份是59毫米,分数表示:米,用小数表示:0.059米。
取其中的125份是125毫米,分数表示:米,用小数表示:0.125米。
4、对比直观描述,小数的意义
师:结合我们刚刚学过的一位小数、两位小数、三位小数完成表格
生独立思考,汇报研究结果,根据学生的回答进行板书。
通过研究,你有什么发现?
学生1:我发现,分母是10的可以写成一位小数,用分数表示是十分之几,用小数表示几个0.1.
师:这位同学总结的非常好,还有谁想来说一说?
学生2:我发现,分母是100可以写成两位小数,,用分数表示是百分之几,用小数表示几个0.01.
学生3:我发现,分母是1000的可以写成三位小数,用分数表示是千分之几,用小数表示几个0.001
师:同学们说的都非常的好,那小数点在这里表示什么意思?(表示想这样的小数和分数还有很多很多,等我们以后再学习)
5、小数之间的进率
1毫米→1厘米→1分米→1米,它们之间的进率发生什么变化?
0.001米→0.01米→0.1米→1米,它们之间的进率发生了什么变化?
师:在小数中,每相邻两个计数单位之间的进率是10.
三、课堂练习,巩固深化
1、把分数化小数(生独立完成,再汇报)。
2、填一填。
3、书本33页做一做。
4、找朋友(将老师发的小书签,根据书签上的小数或分数说出你的`朋友小数或分数是几,请起立,展示给全班是不是朋友)。
5、生活中的数学,让数学贴近生活。
四、能力提高,聪明屋
用5,4,0,1,3这五张卡片摆出不同的数。
1、小于1且小数部分是三位的小数。
2、小于1且最大的三位小数。
3、小于1且最小的三位小数。
五、全课小结,今天你有什么收获?
板书设计
教学后记
本课结合具体的情境,进一步体会小数的意义及其与生活的广泛联系。在创设情境中,我尽量让学生多说说自己在生活中看到过的小数。如测量自己身边物体的长度,自己的身高、体重、物体的大小或长度等。让学生感受到小数实际在生活的应用是非常广的,因此我们有学习小数的必要性和重要性。
在掌握简单的小数和分数的基础上,体会十进分数与小数的关系并能进行转化,明确小数的计数单位,理解并掌握小数的意义。小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。从一位小数入手,让学生经历具体分析一位小数的意义的过程,为后面理解二位、三位小数的意义作铺垫,在此基础上再实现对小数的整体意义的概括,降低了教学难度。
《小数的意义》的教案10
教学内容:
人教版小学数学四年级下册第4单元第32页。
教学目标
1.理解和掌握小数的意义。
2.理解整数、小数、分数之间的联系。
教学重点:理解和掌握小数的意义。
教学难点:认识小数的计数单位。
教学过程
一、展示生活中的小数
师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)
我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。
二、创设情境,导入新课:
这些数都是什么数?
生:小数。
师:小数是怎么产生的呢?
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
揭示课题:小数的意义。
关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。
三、探究新知:
1.提出探究问题,引出小数的性质。
我们把1米平均分成10份,每份用分数表示是多少米?
每份用分数表示是米?
1-1. 反馈交流。请学生结合图说明自己的想法。
师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。
师:0.1米是怎样得到的?谁来说一说。
生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。
箭头指向30的地方怎么表示? 0.3米是怎样得到的?
我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。
0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1
同理得出:指向7的.箭头,用分数和小数分别怎么表示?
把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1
1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的计数单位是十分之一,也写作0.1。
2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?
师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。
师:刚才0.01米是怎样得到的?谁来说一说。
生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。
箭头指向4的地方怎么表示?0.04米是怎样得到的?
我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01
同理得出:指向8箭头,用分数和小数分别怎么表示?
把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01
2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。
3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?
师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。
师:刚才0.001米是怎样得到的?谁来说一说。
生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。
箭头指向6的地方怎么表示? 0.006米是怎样得到的?
我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001
3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。
刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。
5、各部分名称:
(以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。
归纳:每相邻两个计数单位之间的进率是10。
课堂小结:
今天你有什么收获?
1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。
2.小数中, 每相邻两个计数单位间的进率是10。
3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。
《小数的意义》的教案11
教学目标
1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。
2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。
3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。
教学重点理解小数的意义
教学难点掌握小数与分数的关系,深刻理解小数的意义。
教法自主探索、合作学习
教学准备多媒体课件、卡片、米尺
教学课时1课时
一、旧知复习
二、生活中的小数
1、小数的产生
2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。
小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。
三、探究新知
探索一:一位小数的意义
把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?
小结:分母是10的分数,可以写成一位小数
板书:一位小数表示十分之几
探索二:二位小数的意义
还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学
小结:分母是100的分数,可以写成两位小数。
板书:二位小数表示百分之几
探索三:三位小数的意义
如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?
小结:分母是1000的分数,可以写成三位小数
板书:三位小数表示千分之几
总结:
①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。
②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。
探索四:小数的计数单位及进率
小数的.计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001
那么相邻两个单位间的进率是多少?
板书:每相邻两个计数单位之间的进率是10
四、练习达标
1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)
2、判断题
(1)0.1、0.01、0.001…是小数的计数单位。
(2)十分之一、百分之一、千分之一…是小数的计数单位
(3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。
3。填空
0.8里面有个0.1;0.008里面有8个;
0.32里面有32个;6个是0.6;
0.5表示把整体;平均分成份,取其中的份。
0.24表示把整体;平均分成份,取其中的份。
板书设计
《小数的意义》
一位小数表示十分之几
二位小数表示百分之几
三位小数表示千分之几
每相邻两个计数单位之间的进率是10
课后反思
《小数的意义》的教案12
教学目标
知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。
过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。
情感态度与价值观:①体验自主探索、合作交流,感受成功的`愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解小数的意义及每相邻两个单位时间的进率是十。
教学难点:概括和理解小数的意义。
教法:启发引导法
学法:合作交流
教具学具准备:直尺。
教学过程
一、定向导学(5分)
1、判断下面哪些数是整数?
4、12、38、3.01、105、0.007、20xx、100.06。
整数每相邻的两个计数单位之间的进率都是( )。
板书课题
2、揭示目标:
理解小数的意义及每相邻两个单位时间的进率是十。
二、自主学习(10分)
自学内容:课本p32-33上半页
方法:边看书边完成下面的要求。时间:5分钟
要求:
1、把1米平均分成10份,每份是( )米,写成小数是( )米;
把1米平均分成10份,3份是( )米,写成小数是( )米。
2、把1米平均分成100份,每份是( )米,写成小数是( )米;
把1米平均分成100份,15份是( )米,写成小数是( )米。
3、把1米平均分成1000份,每份是( )米,写成小数是( )米;
把1米平均分成1000份,27是()米,写成小数是( )米。
(1--6组的4号发言,1号评价)
三、合作交流:5分钟
1、什么是小数?
2、小数的计数单位是多少?
(7组的4号发言,1号评价)
四、质疑探究(5分)
每相邻两个计数单位之间的进率是多少?
五、小结检测(15分)
1、小结:
谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
2、检测:
a、填空。
(1)0.1是( )分之一,0.7里有( )个0.1。
(2)10个0.1是( ),10个0.01是( )。
(3) 写成小数是( ), 写成小数是( )。
b、判断:
(1)0.40里面有4个0.01。 ( )
(2)35克=0.35千克( )
元=0.7 元 ( )
=0.01 ( )
米 =0.3米 ( )
=0.03 ( )
=0.030 ( )
c、把小数改写成分数。
0.9 0.09 0.0359
3、堂清作业:教材p33页,p36、1.2
板书设计:
小数的意义
十分之一--------- 0.1
百分之一---------0.01
千分之一---------0.001
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
《小数的意义》的教案13
设计说明
《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:
1.在分类中感知小数。
分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。
2.在数形结合中自主探究小数。
《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。
3.找准起点,促进知识的迁移。
小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。
课前准备
教师准备 多媒体课件
学生准备 米尺
教学过程
⊙在分类中感知小数
1.在分类中感知小数。
师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)
老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的.过程中理解一位小数、两位小数……)
2.导入新课。
师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)
设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。
⊙探究新知
1.了解小数的产生。
(1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)
(2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?
(学生可能感到很困惑,有的学生可能会想到用分数表示)
(3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。
2.教学小数的意义。
(1)认识一位小数。
①课件出示米尺图。
把1米平均分成10份,指一指每一份所对应的位置。
②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)
③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)
④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米
0.7米)
⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)
预设
生1:我发现分母是10的分数,可以写成一位小数的形式。
生2:我发现一位小数表示的是十分之几。
⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
(2)认识两位小数。
①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]
②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)
(3)认识三位小数。
师:把1米平均分成1000份,每份长多少?
《小数的意义》的教案13篇 小学数学《小数的意义》教案相关文章:
★ 四年级数学《小数的加法和减法》教案11篇(小学四年级小数的加法和减法教案)