《比例的意义》教案12篇 比例的意义教案及反思

时间:2024-02-03 11:02:00 教案

  下面是范文网小编整理的《比例的意义》教案12篇 比例的意义教案及反思,以供借鉴。

《比例的意义》教案12篇 比例的意义教案及反思

《比例的意义》教案1

  一、知识与技能

  1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  二、过程与方法

  1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.

  2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.

  三、情感态度与价值观

  1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.

  2、通过分组讨论,培养学生合作交流意识和探索精神.

  教学重点:理解和领会反比例函数的概念.

  教学难点:领悟反比例的概念.

  教学过程

  一、创设情境,导入新课

  活动1

  问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

  (1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

  (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

  (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

  师生行为:

  先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

  教师组织学生讨论,提问学生,师生互动.

  在此活动中老师应重点关注学生:

  ①能否积极主动地合作交流.

  ②能否用语言说明两个变量间的关系.

  ③能否了解所讨论的函数表达形式,形成反比例函数概念的.具体形象.

  分析及解答:(1)

  ;(2)

  ;(3)

  其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

  上面的函数关系式,都具有

  的形式,其中k是常数.

  二、联系生活,丰富联想

  活动2

  下列问题中,变量间的对应关系可用这样的函数式表示?

  (1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;

  (2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

  (3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

  师生行为

  学生先独立思考,在进行全班交流.

  教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

  (1)能否从现实情境中抽象出两个变量的函数关系;

  (2)能否积极主动地参与小组活动;

  (3)能否比较深刻地领会函数、反比例函数的概念.

  分析及解答:(1)

  ;(2)

  ;(3)

  概念:如果两个变量x,y之间的关系可以表示成

  的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

  活动3

  做一做:

  一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  师生行为:

  学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

  ①生能否理解反比例函数的意义,理解反比例函数的概念;

  ②学生能否顺利抽象反比例函数的模型;

  ③学生能否积极主动地合作、交流;

  活动4

  问题1:下列哪个等式中的y是x的反比例函数?

  问题2:已知y是x的反比例函数,当x=2时,y=6

  (1)写出y与x的函数关系式:

  (2)求当x=4时,y的值.

  师生行为:

  学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

  ①学生能否领会反比例函数的意义,理解反比例函数的概念;

  ②学生能否积极主动地参与小组活动.

  分析及解答:

  1、只有xy=123是反比例函数.

  2、分析:因为y是x的反比例函数,所以

  ,再把x=2和y=6代入上式就可求出常数k的值.

  解:(1)设

  ,因为x=2时,y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、巩固提高

  活动5

  1、已知y是x的反比例函数,并且当x=3时,y=8.

  (1)写出y与x之间的函数关系式.

  (2)求y=2时x的值.

  2、y是x的反比例函数,下表给出了x与y的一些值:

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

  四、课时小结

  反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

《比例的意义》教案2

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的'速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

《比例的意义》教案3

  教学目标

  1、使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用,反比例的意义。

  2、能正确判断成正反比例的量,为解答正反比例应用题打下基础。

  教学重点和难点

  理解反比例的意义,掌握两种相关联的量变化规律。

  教学过程设计

  (一)复习准备

  1、(出示幻灯)

  一种练习本的数量和总页数如下表:

  师:请回答下列问题。

  (1)表中哪个量是固定不变的量?

  (2)哪两种量是相关联的量?它们的变化规律是怎样的?

  (3)表内相关联的两种量成正比例吗?为什么?

  2、填空。(小黑板(一))

  两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的'关系叫做________关系。

  3、判断下面各题中两种量是否成正比例。

  (1)文具盒的单价一定,买文具盒的个数和总价( )。

  (2)水稻产量一定,水稻的种植面积和总产量( )。

  (3)一堆货物一定,运出的和剩下的( )。

  (4)汽车行驶的速度一定,行驶的时间和路程( )。

  (5)比值一定,比的前项和后项( )。

  可选其中一、二题,说一说为什么?

  师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)

  (二)学习新课

  出示例4。(小黑板(二))

  例4华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:

  (1)分析表,回答下列问题。(幻灯出示)

  ①表中有哪种量?

  ②两种相关联的量是如何变化的?

  ③你能说出它们的关系式吗?

  ④相对应的每两个数的乘积各是多少?

  ⑤哪种量是固定不变的?

  师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)

  (2)同学们发言。

《比例的意义》教案4

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1.理解比例的意义,认识比例各部分的名称。

  2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1.提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2.探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的.比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3.认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4.教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5.运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

  学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

《比例的意义》教案5

  1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

  2.学会判断成正比例关系的量。

  3.进一步培养学生观察、分析、概括的能力。

  教学重点和难点

  理解正比例的意义,掌握正比例变化的规律。

  教学过程设计

  (一)复习准备

  请同学口述三量关系:

  (1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

  (学生口述关系式、老师板书。)

  (二)学习新课

  今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

  幻灯出示:

  一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

  生:60千米、120干米、180千米……

  师:根据刚才口答的问题,整理一个表格。

  出示例1。(小黑板)

  例1 一列火车行驶的时间和所行的路程如下表。

  师:(看着表格)回答下面的问题。表中有几种量?是什么?

  生:表中有两种量,时间和路程。

  师:路程是怎样随着时间变化的?

  生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

  师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

  (板书:两种相关联的量)

  师:表中谁和谁是两种相关联的量?

  生:时间和路程是两种相关联的量。

  师:我们看一看他们之间是怎样变化的?

  生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

  师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

  生:路程由480千米变为420千米、360千米……

  师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

  生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

  师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

  (分组讨论)

  师:请同学发表意见。

  生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

  师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

  师:根据时间和路程可以求出什么?

  生:可以求出速度。

  师:这个速度是谁与谁的比?它们的结果又叫什么?

  生:这个速度是路程和时间的比,它们的结果是比值。

  师:这个60实际是什么?变化了吗?

  生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

  驶多少千米,速度都是60千米,这个速度是一定的.,是固定不变的量,我们简称为定量。

  师:谁是定量时,两种相关联的量同扩同缩?

  生:速度一定时,时间和路程同扩同缩。

  师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

  (学生口算验证。)

  生:都是60千米,速度不变,符合变化的规律,同扩同缩。

  师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

  师:谁能像老师这样叙述一遍?

  (看黑板引导学生口述。)

  师:我们再看一题,研究一下它的变化规律。

  出示例2。(小黑板)

  例2 某种花布的米数和总价如下表:

  (板书)

  按题目要求回答下列问题。(幻灯)

  (1)表中有哪两种量?

  (2)谁和谁是相关联的量?关系式是什么?

  (3)总价是怎样随着米数变化的?

  (4)相对应的总价和米数的比各是多少?

  (5)谁是定量?

  (6)它们的变化规律是什么?

  生:(答略)

  师:比较一下两个例题,它们有什么共同点?

  生:都有两种相关联的量,一种量变化,另一种量也随着变化。

  师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

  师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

  生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

  师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

  师:很好。请打开书,看书上是怎样总结的?

  (生看书,并画出重点,读一遍意义。)

  师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

  师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

  生:(答略)

  师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

  (三)巩固反馈

  1.课本上的“做一做”。

  2.幻灯出示题,并说明理由。

  (1)苹果的单价一定,买苹果的数量和总价( )。

  (2)每小时织布米数一定,织布总米数和时间( )。

  (3)小明的年龄和体重( )。

  (四)课堂总结

  师:今天主要讲的是什么内容?你是如何理解的?

  (生自己总结,举手发言。)

  师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

  (五)布置作业

  (略)

  课堂教学设计说明

  第一部分:复习三量关系,为本节内容引路。

  第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

  第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

  总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

  板书设计

《比例的意义》教案6

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的`内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

《比例的意义》教案7

  教学内容

  教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

  教学目标

  1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

  2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

  教学重点

  认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

  教学难点

  理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、联系生活,复习引入

  (1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

  (2)揭示课题。

  教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

  教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

  二、自主探索,学习新知

  1、教学例1

  用课件在刚才准备题的表格中增加几列数据,变成表。

  教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

  教师根据学生的回答将表格完善,并作必要的板书。

  教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

  板书:相关联

  教师:你们还发现哪些规律?

  学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

  教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

  板书:

  2.教学试一试

  教师:我们再来研究一个问题。

  课件出示第52页下面的试一试。

  学生先独立完成。

  教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

  教师根据学生的回答归纳如下:

  表中的路程和时间是相关联的量,路程随着时间的变化而变化。

  时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

  路程与时间的比值是一定的.,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

  3.教学议一议

  教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

  引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

  教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

  4.教学课堂活动

  教师:请大家说一说生活中还有哪些是成正比例的量。

  三、夯实基础,巩固提高

  (1)完成练习十二的第1题。

  教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

  学生独立思考,先小组内交流再集体交流。

  (2)完成练习十二的第2题。

  四、全课小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

《比例的意义》教案8

  教学目标:

  1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。

  2、 培养学生的观察能力、判断能力。

  教学重点:

  比例的意义和基本性质

  学法:

  自主、合作、探究

  教学准备:

  课件

  教学过程:

  一:创设情境,导入新课

  1、 谈话,播放课件,引出主题图

  师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?

  (播放视频,生观察,并说看到的内容)

  师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)

  师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。

  问:画面上这几面国旗有什么不同?(大小不一样)

  师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)

  (课件出示主题图,让学生说出长和宽各是多少)

  问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)

  二、引导探究,学习新知

  1、比例的意义

  (生汇报求比值的过程)

  师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)

  师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)

  师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)

  师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)

  问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)

  (小练习,课件出示)

  2探究比例的基本性质

  (1)自学比例的名称

  师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的'位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)

  (2)合作探究比例的基本性质

  师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读

  各小组派一名代表汇报合作学习发现的规律。

  师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。

  师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)

  师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书

  三、巩固练习(见课件)

  四、汇报学习收获

《比例的意义》教案9

  教学内容:

  教材第42~44页例4~例6,“练一练”,练习八第4—7题。

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:

  认识反比例关系的意义。

  教学难点:

  掌握成反比例量的变化规律及其特征。

  教学过程:

  一、复习旧知

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、教学新课

  1.教学例4。

  出示例4。让学生计算,在课本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答讨论的结果,得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的'是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例5。

  出示例5。

  请同学们按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么,再提问:这两种相关联量变化的规律是什么?(板书:每袋重量和袋数的积一定)乘积8000是什么数量,这种数量关系用式子怎样表示?[板书:每袋重量×袋数=糖果总重量(一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

  3.概括反比例的意义。

  (1)综合例4、例5的共同点。

  提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例4、例5里两种相关联的量,它们是什么关系的量呢?请同学们看第43页倒数第二节。说明:像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

  4.具体认识。

  (1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例5里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3)做练习八第4题。

  让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

  (4)判断。

  现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

  5.教学例6。

  出示例6,学生读题、思考。提问:怎样判断成不成反比例?哪位同学说说每本的页数和装订的本数成不成反比例?为什么?【板书;每本的页数×本数=纸的总页数(一定)】请同学们看书上例6是怎样判断的,看看我们说得对不对。追问:判断两种量成不成反比例要怎样想?其中关键是看什么?

  三、巩固练习

  用刚才我们说的判断方法来做几道题。

  1.做“练一练”第l题。

  指名学生口答,说明理由。(可以写出数量关系式看一看)

  2.做“练一练”第2题。

  指名口答,说说理由。思考时可以引导看数量关系式。

  3.做练习八第5题。

  让学生先在书上判断。指名口答,要求说出数量关系式判断。

  4.下题两种相关联量成不成反比例?为什么?

  一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

  5.做练习八第6题。

  各人先在书上写各成什么比例。指名口答,要求说明理由。

  6.做练习八第7题。

  先让学生默读题目。提问:题里有怎样的关系式?(板书:圆柱底面积×高=体积)指名学生口答.

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

  五、课堂作业

  练习八第7题。

《比例的意义》教案10

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的.比值都是40,相等)

  2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

《比例的意义》教案11

  教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.’工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

  “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

  “每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的`本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

  两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

  们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1 表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

  在表l中: 在表2中:

  相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

  一定。因此,路程和时间 ,路程是一定的。因此,速

  成正比例关系。 度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程

  =速度 =速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《比例的意义》教案12

  教学目标:

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  教学重点:

  成正比例的量的特征及其判断方法。

  教学难点:

  理解两个变量之间的比例关系,发现思考两种相关联的.量的变化规律.

  教法:

  启发引导法

  学法:

  自主探究法

  教具:

  课件

  教学过程:

  一、定向导学(5分)

  1、已知路程和时间,求速度

  2、已知总价和数量,求单价

  3、已知工作总量和工作时间,求工作效率

  4、导入课题

  今天我们来学习成正比例的量。

  5、出示学习目标

  1、理解正比例的意义。

  2、能根据正比例的意义判断两种量是不是成正比例。

  二、自主学习(8分)

  自学内容:书上45页例1

  自学时间:8分钟

  自学方法:读书法、自学法

  自学思考:

  1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

  2、正比例关系式是什么?

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

  (2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

  (3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  y/x=k(一定)

  (4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

  2、归类提升

  引导学生小结成正比例的量的意义和关系式。

  三、合作交流(5分)

  第46页正比例图像

  1、正比例图像是什么样子的?

  2、完成46页做一做

  3、各组的b1同学上台讲解

  四、质疑探究(5分)

  1、第49页第1题

  2、第49页第2题

  3、你还有什么问题?

  五、小结检测(8分)

  1、什么是正比例关系?如何判断是不是正比例关系?

  2、检测

  1、49页第3题。

  六、堂清作业(9分)

  练习九页第4、5题。

  板书设计:

  成正比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

  关系式:

  y/x=k

  (一定)

《比例的意义》教案12篇 比例的意义教案及反思相关文章:

《正比例的意义》教案7篇 正比例的意义优质课

数学教案:《分数的意义》12篇 分数的意义教学简案

六年级数学《百分数的意义》教案6篇(百分数的意义六上)

比的意义教案10篇 比的意义反思

反比例的意义教案9篇 反比例的意义的教学反思

比例的意义教学反思11篇(用比例解决问题教学反思)

关于分数的意义教案3篇 分数的意义简单教案

反比例意义教学反思10篇 反比例的意义课堂实录

数学小数的意义和性质教案3篇 小数的意义与性质教案

《比例》公开课教案3篇(比例 教案)