高三物理教案11篇 高三物理复习课教案

时间:2024-02-22 15:43:00 教案

  下面是范文网小编整理的高三物理教案11篇 高三物理复习课教案,以供借鉴。

高三物理教案11篇 高三物理复习课教案

高三物理教案1

  研究性实验:(1) 研究匀变速运动练习使用打点计时器:

  1.构造:见教材。

  2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4

  正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。

  3.重点:纸带的分析 0 1 2 3 4

  a.判断物体运动情况:

  在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。

  如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。

  b.测定加速度:

  公式法: 先求?S,再由?S= aT2求加速度。

  图象法: 作v-t图,求a=直线的斜率

  c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T

  测定匀变速直线运动的加速度:

  1.原理::?S=aT2

  2.实验条件:

  a.合力恒定,细线与木板是平行的。

  b.接50HZ,4-6伏交流电。

  3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。

  4.主要测量:

  选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。

  5. 数据处理: 0 1 2 3 4 5 6

  根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。

  用逐差法处理数据求出加速度:

  S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2

  a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2

  测匀变速运动的即时速度:(同上)

  (2) 研究平抛运动

  1.实验原理:

  用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。

  2.实验器材:

  木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的'卡片,重锤线。

  3.实验条件:

  a. 固定白纸的木板要竖直。

  b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。

  c.小球每次从槽上同一位置由静止滑下。

  (3) 研究弹力与形变关系

  方法归纳:

  (1)用悬挂砝码的方法给弹簧施加压力

  (2)用列表法来记录和分析数据(如何设计实验记录表格)

  (3)用图象法来分析实验数据关系

  步骤:

  1以力为纵坐标、弹簧伸长为横坐标建立坐标系

  2根据所测数据在坐标纸上描点

  3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)

  4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。

  5解释函数表达式中常数的意义。

  2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度

高三物理教案2

  高三物理总复习的目的是透过总复习,使学生掌握物理概念及其相互关系,熟练掌握物理规律、公式及应用,总结解题方法与技巧,从而提高分析问题和解决问题的潜力。为了达成以上目的,我们在高三教学过程中应做到以下几点:

  一、抓住考纲、回归课本

  1、“考纲”即“考试说明”,它是考试出题的依据,因此在高考复习过程中应紧紧抓住考纲逐一落实考点,用考纲来检查学生对知识点的掌握状况,才能做到全面无遗漏;要对照考纲一个一个知识点落实,从考纲对知识点的要求的程度对照学生掌握的状况看是否达标。

  2、在复习备考时,应以课本为本,充分发挥课本的主导作用,在复习过程中,应指导学生带着问题看书,研读教材资料,使其看书有必须的目的性,便于弥补自已基础知识弱点,融会贯通教材的基础知识结构,使其回归课本目的性强,才能充分利用时间,真正到达查缺补漏的目的。

  3、正确处理好“热点”与“冷点”。最后阶段复习中,不仅仅要注意考纲中的热点问题,在看书时要重视考纲中的重点资料,同时更要关心所谓的“冷点”。因为前一轮复习中在综合试卷里所谓的重点知识、热点知识出现的机会较多,通常都进行了反复的强化,恰恰在所谓的“冷点”的地方出题较少,重复的机会少,有的甚至没有考查过,所以在今后的教学中要有必要的给以加强。如:今年高考实验题对示波器的考查。以后应注意在“冷点”上的复习,以防止在高考当中出现一些知识上的死角。

  二、夯实基础,培养潜力

  在高考复习备考时,要处理好“基础”与“潜力”的关系,个性是在第一阶段的复习过程中,重点是复习基本概念、基本规律及其应用,基本解题方法与技巧等基础知识。但在夯实基础的同时还应当有目的的加强以下几种潜力的培养。

  1.加强信息迁移问题的训练,提高阅读潜力、理解潜力和分析问题的潜力。信息迁移问题一般都是给出一段文字或图片信息,要求透过阅读该信息去回答或解决一些物理问题,信息迁移问题着重考查学生临场阅读,提取信息和进行信息加工、处理,以及灵活运动基本知识分析和解决问题的潜力,如:给出有关磁悬浮列车的文字资料和图片,要求学生透过阅读资料,去回答和分析有关磁悬浮列车的问题。

  2.加强科技应用问题的训练,提高运用物理知识去分析和解决实际问题的潜力。纵观近年的高考卷,生活、生产、科学研究中的物理问题已成为高考中的热点。平常的物理教学强调理论的完整性,系统性,缺少与科学技术和生活实际的联系,在物理教学及有关问题训练时,往往是简化后的物理对象、场景,把所有物理问题变成了理想化、模型化,而实际生活问题则往往不同,它并不明显给出简化或理想化的对象及物理场景,因而需要培养学生学会抽取物理对象和物理场景的环节。

  3.加强实验技能训练,提高实验潜力。推荐在高三复习阶段重做高中阶段已做过的重要实验,开放实验室,但不要简单重复。要求学生用新视角重新观察已做过的实验,要有新的发现和收获,同时要求在实验中做到“一个了解、五个会”。即了解实验目的、步骤和原理;会控制条件(控制变量)、会使用仪器、会观察分析、会解释结果得出相应结论,并会根据原理设计简单的实验方案。以实验带复习,设计新的实验。进一步完善认知结构,明确认识结论、过程和质疑三要素,为进一步培养学生科学精神打下基础。学会正确、简练地表述实验现象、实验过程和结论,个性是书面的表述。

  4.加强创新思维训练,提高创新思维潜力。创新思维题是近几年高考物理试题或理科综合潜力测试题中考查学生能否寻求独特而新颖的,并具备社会价值的思维方法解决尚无先例的问题的潜力,这些题大多数属于开放性的实际应用题,创新思维的主要成份是发散性思维和集中性思维。所谓发散性思维是一种不依常规,寻求尽可能多种多样的答案的思维,它具有流畅性、变通性和独创性的特点;而集中性思维则是依据已有的信息和各种设想,朝着问题解决的方向求得最佳方案和结果的思维操作过程,发散性思维以寻求解决问题的各种可能性为主,而集中性思维则在这些可能的途径中选取和比较出最优的解决方案,两者相互联系,缺一不可。

  三、做好归纳,注重综合

  1、要善于归纳总结,不仅仅要构成比较完整的`知识体系,而且对物理习题最好能构成自己熟悉的解题体系,从而在高考中应对陌生的试题能把握主动。

  2、注重学科内知识的综合,重点应放在力学、电磁学的综合,加强训练、归纳、总结,反思、提高分析综合及用数学处理物理问题的潜力。

  四、重视训练,注意答题的规范化

  1、平时训练中要让学生抓住自己有困难的问题认真分析,针对性的训练。最后的阶段应避开难题、做少量的练习。要选取难度适中,自己“跳一跳够得着”的题目和一些基础题目来做,要保证质量和做题的效率及情绪和信心,透过做题持续良好的解题潜力。

  2、规范答题。物理试题的解答比较重视物理过程和步骤,这就要求在教学过程中强化学生在解答物理题时要规范。解答计算题时注意以下几方面:要有必要的图示,要有必要的文字说明,要有方程式和必要的演算步骤,计算结果要思考有效数字和单位。让学生在练习时尤其在做高考题时要仔细看一看计算题就应怎样样表述,答案的评分标准如何,力争做到能做对的题目就必须不丢分。

  总之,在高考物理复习过程中,必须要有周密的计划、科学的方法、得力的措施,只有这样,才能取得高考的胜利。

高三物理教案3

  直线运动

  一、匀变速直线运动公式

  1.常用公式有以下四个:, ,

  ⑴以上四个公式中共有五个物理量:s、t、a、V0、Vt,这五个物理量中只有三个是独立的,可以任意选定。只要其中三个物理量确定之后,另外两个就唯一确定了。每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。

  ⑵以上五个物理量中,除时间t外,s、V0、Vt、a均为矢量。一般以V0的方向为正方向,以t=0时刻的位移为零,这时s、Vt和a的正负就都有了确定的物理意义。

  应用公式注意的三个问题

  (1)注意公式的矢量性

  (2)注意公式中各量相对于同一个参照物

  (3)注意减速运动中设计时间问题

  2.匀变速直线运动中几个常用的结论

  ①Δs=aT 2,即任意相邻相等时间内的位移之差相等。可以推广到sm-sn=(m-n)aT 2

  ②,某段时间的中间时刻的即时速度等于该段时间内的平均速度。

  ,某段位移的中间位置的即时速度公式(不等于该段位移内的平均速度)。

  可以证明,无论匀加速还是匀减速,都有。

  3.初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,或者末速度为零,那么公式都可简化为:

  ,,,

  以上各式都是单项式,因此可以方便地找到各物理量间的比例关系。

  4.初速为零的匀变速直线运动

  ①前1s、前2s、前3s……内的位移之比为1∶4∶9∶……

  ②第1s、第2s、第3s……内的位移之比为1∶3∶5∶……

  ③前1m、前2m、前3m……所用的时间之比为1∶ ∶ ∶……

  ④第1m、第2m、第3m……所用的时间之比为1∶ ∶( )∶……

  5、自由落体运动是初速度为零的匀加速直线运动,竖直上抛运动是匀减速直线运动,可分向上的匀减速运动和竖直向下匀加速直线运动。

  二、匀变速直线运动的基本处理方法

  1、公式法

  课本介绍的公式如等,有些题根据题目条件选择恰当的公式即可。但对匀减速运动要注意两点,一是加速度在代入公式时一定是负值,二是题目所给的时间不一定是匀减速运动的时间,要判断是否是匀减速的时间后才能用。

  2、比值关系法

  初速度为零的匀变速直线运动,设T为相等的时间间隔,则有:

  ①T末、2T末、3T末??……的瞬时速度之比为:

  v1:v2:v3:……vn=1:2:3:……:n?

  ② T内、2T内、3T内……的位移之比为:

  s1:s2:s3: ……:sn=1:4:9:……:n2

  ③第一个T内、第二个T内、第三个T内……的位移之比为:

  sⅠ:sⅡ:sⅢ:……:sN=1:3:5: ……:(2N-1)

  初速度为零的匀变速直线运动,设s为相等的位移间隔,则有:

  ④前一个s、前两个s、前三个s……所用的时间之比为:

  t1:t2:t3:……:tn=1:……:

  ⑤第一个s、第二个s、第三个s……所用的时间tⅠ、tⅡ、tⅢ ……tN之比为:

  tⅠ:tⅡ:tⅢ:……:tN =1:……:

  3、平均速度求解法

  在匀变速直线运动中,整个过程的平均速度等于中间时刻的瞬时速度,也等于初、末速度和的一半,即:。求位移时可以利用:

  4、图象法

  5、逆向分析法

  6、对称性分析法

  7、间接求解法

  8、变换参照系法

  在运动学问题中,相对运动问题是比较难的部分,若采用变换参照系法处理此类问题,可起到化难为易的效果。参照系变换的方法为把选为参照物的物理量如速度、加速度等方向移植到研究对象上,再对研究对象进行分析求解。

  三、匀变速直线运动规律的应用—自由落体与竖直上抛

  1、自由落体运动是初速度为零、加速度为g的匀加速直线运动。

  2、竖直上抛运动

  竖直上抛运动是匀变速直线运动,其上升阶段为匀减速运动,下落阶段为自由落体运动。它有如下特点:

  (1).上升和下降(至落回原处)的两个过程互为逆运动,具有对称性。有下列结论:

  ①速度对称:上升和下降过程中质点经过同一位置的速度大小相等、方向相反。

  ②时间对称:上升和下降经历的时间相等。

  (2).竖直上抛运动的特征量:①上升最大高度:Sm= .②上升最大高度和从最大高度点下落到抛出点两过程所经历的时间:.

  (3)处理竖直上抛运动注意往返情况。

  追及与相遇问题、极值与临界问题

  一、追及和相遇问题

  1、追及和相遇问题的特点

  追及和相遇问题是一类常见的运动学问题,从时间和空间的角度来讲,相遇是指同一时刻到达同一位置。可见,相遇的物体必然存在以下两个关系:一是相遇位置与各物体的初始位置之间存在一定的位移关系。若同地出发,相遇时位移相等为空间条件。二是相遇物体的运动时间也存在一定的关系。若物体同时出发,运动时间相等;若甲比乙早出发Δt,则运动时间关系为t甲=t乙+Δt。要使物体相遇就必须同时满足位移关系和运动时间关系。

  2、追及和相遇问题的求解方法

  分析追及与相碰问题大致有两种方法即数学方法和物理方法。

  首先分析各个物体的运动特点,形成清晰的运动图景;再根据相遇位置建立物体间的位移关系方程;最后根据各物体的运动特点找出运动时间的关系。

  方法1:利用不等式求解。利用不等式求解,思路有二:其一是先求出在任意时刻t,两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t) ,则这两个物体可能相遇。其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇。

  方法2:利用图象法求解。利用图象法求解,其思路是用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇。

  3、解“追及、追碰”问题的思路

  解题的基本思路是(1)根据对两物体运动过程的分析,画出物体的运动示意图(2)根据两物体的运动性质,分别列出两个物体的位移方程。注意要将两物体运动时间的关系反映在方程中(3)由运动示意图找出两物体间关联方程(4)联立方程求解。

  4、分析“追及、追碰”问题应注意的问题:

  (1)分析“追及、追碰”问题时,一定要抓住一个条件,两个关系;一个条件是两物体的速度满足的临界条件,追和被追物体的速度相等的速度相等(同向运动)是能追上、追不上、两者距离有极值的临界条件。两个关系是时间关系和位移关系。其中通过画草图找到两物体位移之间的数量关系,是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯,对帮助我们理解题意,启迪思维大有裨益。

  (2)若被追及的物体做匀减速直线运动,一定要注意追上前该物体是否停止。

  (3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如:刚好、恰巧、最多、至少等,往往对应一个临界状态,满足一个临界条件。

  二、极值问题和临界问题的求解方法。

  该问题关键是找准临界点

  扩展阅读

  高三物理教案:《直线运动的图象及应用》教学设计

  一、位移-时间图象:

  1、图象的物理意义:表示做直线运动物体的位移随时间变化的关系。

  横坐标表示从计时开始各个时刻,纵坐标表示从计时开始任一时刻物体的位置,即从运动开始的这一段时间内,物体相对于坐标原点的位移。

  2、图线斜率的意义:图象的斜率表示物体的速度。

  如果图象是曲线则其某点切线的斜率表示物体在该时刻的速度,曲线的斜率将随时间而变化,表示物体的速度时刻在变化。

  斜率的正负表示速度的方向;

  斜率的绝对值表示速度的大小。

  3、匀速运动的位移-时间图象是一条直线,而变速直线运动的图象则为曲线。

  4、图象的交点的意义是表示两物体在此时到达了同一位置即两物体"相遇"。

  5、静止的物体的位移-时间图象为平行于时间轴的直线,不是一点。

  6、图象纵轴的截距表示的是物体的初始位置,而横轴的截距表示物体开始运动的时刻,或物体回到原点时所用的时间。

  7、图象并非物体的运动轨迹。

  二、速度-时间图象:

  1、图象的物理意义:表示做直线运动物体的速度随时间变化的关系。

  横坐标表示从计时开始各个时刻,纵坐标表示从计时开始任一时刻物体的速度。

  2、图线斜率的意义:图象的斜率表示物体加速度。

  斜率的正负表示加速度的方向;

  斜率的绝对值表示加速度大小。

  如果图象是曲线,则某一点切线的斜率表示该时刻物体的加速度,曲线的斜率随时间而变化表示物体加速度在变化。

  3、匀速直线运动的速度图线为一条平行于时间轴的直线,而匀变速直线运动的图象则为倾斜的直线,非匀变速运动的速度图线的曲线。

  4、图象交点意义表示两物体在此时刻速度相等,而不是两物体在此时相遇。

  5、静止物体的速度图象是时间轴本身,而不是坐标原点这一点。

  6、图象下的面积表示位移,且时间轴上方的面积表示正位移,下方的面积表示负位移。

  7、图象纵轴的截距表示物体的初速度,而横轴的截距表示物体开始运动的时刻或物体的速度减小到零所用时间。

  8、速度图象也并非物体的运动轨迹。

  【重点精析】

  一、物理图象的识图方法:一轴、二线、三斜率、四面积、五截距、六交点

  运动学图象主要有x-t图象和v-t图象,运用运动学图象解题总结为"六看":一看"轴",二看"线",三看"斜率",四看"面积",五看"截距",六看"特殊点"。

  1、"轴":先要看清坐标系中横轴、纵轴所代表的物理量,即图象是描述哪两个物理量间的关系,是位移和时间关系,还是速度和时间关系?同时还要注意单位和标度。

  2、"线":"线"上的一个点一般反映两个量的瞬时对应关系,如x-t图象上一个点对应某一时刻的位移,v-t图象上一个点对应某一时刻的瞬时速度;"线"上的一段一般对应一个物理过程,如x-t图象中图线若为倾斜的直线,表示质点做匀速直线运动,v-t图象中图线若为倾斜直线,则表示物体做匀变速直线运动。

  3、"斜率":表示横、纵坐标轴上两物理量的比值,常有一个重要的物理量与之对应,用于求解定量计算中对应物理量的大小和定性分析中对应物理量变化快慢的问题。如x-t图象的斜率表示速度大小,v-t图象的斜率表示加速度大小。

  4、"面积":图线和坐标轴所围成的面积也往往表示一个物理量,这要看两轴所代表的物理量的乘积有无实际意义。这可以通过物理公式来分析,也可以从单位的角度分析。如x和t乘积无实际意义,我们在分析x-t图象时就不用考虑"面积";而v和t的乘积vt=x,所以v-t图象中的"面积"就表示位移。

  5、"截距":表示横、纵坐标轴上两物理量在"初始"(或"边界")条件下的物理量的大小,由此往往能得到一个很有意义的'物理量。

  6、"特殊点":如交点,拐点(转折点)等。如x-t图象的交点表示两质点相遇,而v-t图象的交点表示两质点速度相等。

  高三物理《直线运动》知识点

  高三物理《直线运动》知识点

  一、质点的运动(1)—直线运动

  1)匀变速直线运动

  1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0}

  8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)自由落体运动

  1.初速度Vo=02.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  (3)竖直上抛运动

  1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g(从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  高三物理《研究匀变速直线运动》案例分析

  高三物理《研究匀变速直线运动》案例分析

  1.实验器材

  电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.

  2.实验步骤

  (1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源;

  (2)把一细绳系在小车上,细绳绕过滑轮,下端挂合适的钩码,纸带穿过打点计时器,固定在小车后面;

  (3)把小车停靠在打点计时器处,接通电源,放开小车;

  (4)小车运动一段时间后,断开电源,取下纸带;

  (5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析.

  规律方法总结

  1.数据处理

  (1)目的

  通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等.

  (2)处理的方法

  ①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离之差,看其是否为常数,从而确定物体的运动性质.

  ②利用逐差法求解平均加速度研究匀变速直线运动教学设计

  ③利用平均速度求瞬时速度:

  研究匀变速直线运动教学设计

  ④利用速度—时间图象求加速度

  3.注意事项

  (1)平行:纸带、细绳要和木板平行.

  (2)两先两后:实验中应先接通电源,后让小车运动;实验完毕应先断开电源,后取纸带.

  (3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地和小车与滑轮相撞.

  (4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速度大小以能在约50cm的纸带上清楚地取出6~7个计数点为宜.

  a.作出速度—时间图象,通过图象的斜率求解物体的加速度;

  b.剪下相邻计数点的纸带紧排在一起求解加速度.

  2.依据纸带判断物体是否做匀变速运动的方法

  (1)x1、x2、x3……xn是相邻两计数点间的距离.

  (2)Δx是两个连续相等的时间里的位移差:Δx1=x2-x1,Δx2=x3-x2….

  (3)T是相邻两计数点间的时间间隔:T=0.02n(打点计时器的频率为50Hz,n为两计数点间计时点的间隔数).

  (4)Δx=aT2,因为T是恒量,做匀变速直线运动的小车的加速度a也为恒量,所以Δx必然是个恒量.这表明:只要小车做匀加速直线运动,它在任意两个连续相等的时间里的位移之差就一定相等.

  高一物理教案:《匀变速直线运动的规律》教学设计

  高一物理教案:《匀变速直线运动的规律》教学设计

  教学目标

  知识目标

  1、掌握匀变速直线运动的速度公式,并能用来解答有关的问题.

  2、掌握匀变速直线运动的位移公式,并能用来解答有关的问题.

  能力目标

  体会学习运动学知识的一般方法,培养学生良好的分析问题,解决问题的习惯.

  教学建议

  教材分析

  匀变速直线运动的速度公式是本章的重点之一,为了引导学生逐渐熟悉数学工具的应用,教材直接从加速度的定义式由公式变形得到匀变速直线运动的速度公式,紧接着配一道例题加以巩固.意在简单明了同时要让学生自然的复习旧知识,前后联系起来.

  匀变速直线运动的位移公式是本章的另一个重点.推导位移公式的方法很多,中学阶段通常采用图像法,从速度图像导出位移公式.用图像法导位移公式比较严格,但一般学生接受起来较难,教材没有采用,而是放在阅读材料中了.本教材根据,说明匀变速直线运动中,并利用速度公式,代入整理后导出了位移公式.这种推导学生容易接受,对于初学者来讲比较适合.给出的例题做出了比较详细的分析与解答,便于学生的理解和今后的参考.

  另外,本节的两个小标题“速度和时间的关系”“位移和时间的关系”能够更好的让学生体会研究物体的运动规律,就是要研究物体的位移、速度随时间变化的规律,有了公式就可以预见以后的运动情况.

  教法建议

  为了使学生对速度公式获得具体的认识,也便于对所学知识的巩固,可以从某一实例出发,利用匀变速运动的概念,加速度的概念,猜测速度公式,之后再从公式变形角度推出,得出公式后,还应从匀变速运动的速度—时间图像中,加以再认识.

  对于位移公式的建立,也可以给出一个模型,提出问题,再按照教材的安排进行.

  对于两个例题的处理,要引导同学自己分析已知,未知,画运动过程草图的习惯.

  教学设计示例

  教学重点:两个公式的建立及应用

  教学难点:位移公式的建立.

  主要设计:

  一、速度和时间的关系

  1、提问:什么叫匀变速直线运动?什么叫加速度?

  2、讨论:若某物体做匀加速直线运动,初速度为2m/s,加速度为,则1s内的速度变化量为多少?1s末的速度为多少?2s内的速度变化量为多少?2s末的速度多大?ts内的速度变化量为多少?ts末的速度如何计算?

  3、请同学自由推导:由得到

  4、讨论:上面讨论中的图像是什么样的?从中可以求出或分析出哪些问题?

  5、处理例题:(展示课件1)请同学自己画运动过程草图,标出已知、未知,指导同学用正确格式书写.

  二、位移和时间的关系:

  1、提出问题:一中第2部分给出的情况.若求1s内的位移?2s内的位移?t秒内的位移?怎么办,引导同学知道,有必要知道位移与时间的对应关系.

  2、推导:回忆平均速度的定义,给出对于匀变速直线运动,结合,请同学自己推导出.若有的同学提出可由图像法导出,可请他们谈推导的方法.

  3、思考:由位移公式知s是t的二次函数,它的图像应该是抛物线,告诉同学一般我们不予讨论.

  4、例题处理:同学阅读题目后,展示课件2,请同学自己画出运动过程草图,标出已知、未知、进而求解.

高三物理教案4

  经过一年的复习教学,送走了又一届高三学生,回想这一年来的工作,我觉得反思使我的教学有了长足的进步,成文如下:

  一、反思学生的基础,学习习惯

  学生的力学学习得太差,好几次在讲例子时,学生就说听不懂,也就在班主任面前说某老师教来我听不懂,要求与上位老师一样,换掉,我当然不明白其中的理由,之后才明白,我在解题时中间有一个计算步骤我省略了,我以为学生没有问题,就一个数学运算就应没问题,可哪里明白这个班的学生天生就习惯理解,自己从不主动去思考动手解决问题,我开始反思,怎样才能使学生听得懂?做得来?原先学生的基础差,底子薄,务必从简单的、基本的抓起,于是,我决定,少而精的讲例子,每讲一个例子,得每一步在黑板上板书,然后针对学生的水平做一个类似的题目,渐渐地学生学会做一些题目了,也就不觉得听不懂了

  二、反思教学困惑,构成教学论文

  在复习动能定理时,常常遇到连接体问题,要学生对多个质点运用动能定理,公式多,学生感到拿手,经常出错,于是我想;能不能使问题简化呢?在高中阶段,常常是连接两物体的力的功的代数和为零,我想到把多个动能定理的公式相加,消去了连接物体的力的功,得到质点组动能定理,把它介绍给学生,说明它的适用范围,学生很容易掌握,于是我把它构成论文;在讲振动和波动时,学生对振动图像和波动图像容易混淆,在做作业的`过程中经常出错,而近几年又经常考振动和波动相结合的题,怎样才能使学生更好的区别呢?我反思后写了《正确处理振动和波动的内在关系》一文,像这种类似的反思很多,我发表十多篇反思构成的文章,透过反思文章,使学生的知识难点得到了突破。

  三、反思思想方法,培养建模潜力

  在总复习中,除认真复习知识之外,我还要推荐同学们务必重视对各种物理思想方法的进一步了解和掌握。表面看,这似乎与知识的复习不搭界,其实这才是一项更高层次、更高效率的复习方法。那么,有哪些思想方法需要好好小结呢?我认为至少有以下一些:例如解静力学、动力学问题常用的隔离法、整体法;处理复杂运动常用的运动合成法;追溯解题出发点的分析法;简单明了的图线法;以易代难的等效代换法等等,均为中学物理中基本的思维方法。当然,也还有其它一些属于更巧、更简捷的思维方法。然而两者相比,我主张更要关心基本的常用的思想方法。这些思想方法,一般说,在复习课上老师都会提及,一些写得好的参考书中也会有介绍。同学们在听课和阅读中除关心知识点之外,务请注意这些思维方法的实际应用,要好好消化、吸收,化为己有,再在练习中有意识运用,进一步熟悉它们。此外,在讲课中,要讲清怎样建立物理模型;怎样随着审题而描绘物理情景;怎样分析物理过程;怎样寻找临界状态及与其相应的条件;如何挖掘隐含物理量等等。这些,都是远比列出物理方程完成解题任务更有价值的东西。实践告诉我们,在高三学年,同学们毕竟比高一、高二时有了更强的理解潜力,有了更强的综合分析潜力的优势。一旦领悟掌

  握了方法,就如虎添翼,往往能发挥出比老师更强、更敏捷的思维潜力。

  四、反思教法,听同事授课相互交流

  在复习教学中,经常感到复习课上法单一,没有新意,为了防止长时间的教学方法的单一带来的负面影响,我们高三的几位教师采取了经常听课的方式,只要有时间,就去听同行老师的课,不分场合,不举形式听随堂课,学习他人的教学方法和教学手段,吸取他人的长处,为我所用,听他人是怎样上这些资料的,自己是怎样上的,自己的课有什么不足,别人的课有哪些优点,下一次在上那里时我要怎样上才好,透过这样的相互听课,相互学习,提高自我,提高复习课的质量。

  五、反思作业训练规范练习

  练习在总复习中是举足轻重的一环,要想透过练习到达巩固知识、提高潜力的目的,力求规范地解题是就应遵循的一个原则。具体说务求做到两条:①要规范地使用物理规律。不少同学常从生活经验角度去解物理题,比如用动能定理时习惯从功、能的数值上加加减减来得到结果,而不问列式的物理好处。这种不规范的混乱的思维方式,只能使认知水平停滞在生活经验的层次上,正是复习中一大障碍。物理学自有本身固有的思维规律和方法,像动能定理的应用,首先要求弄清所研究的过程及研究对象在此过程中的受力状况,然后区别各力做功的正、负,再搞清过程的初态和终态,最后按外力功的代数和等于动能增量列出方程,这之后的代数运算便容易了。如果在平时练习中始终能坚持这样规范地使用物理定律、定理,时间久了必然会加深对规律的理解,潜力必须会上升到新的层次。②要将题做完整。我接触过一些学生,做练习“浮而不实”,列出几个物理方程便丢手不做或整理到代数式但懒于代入数字运算等,都不肯将题解到底。他们之中不乏最后失败的实例,均因为他们没有从日常的练习中得到收益。许多物理题,粗一看解题方向似乎很明显,仔细一解才发现里边隐含着重要的变化及关键。再说,一个完整的解题要有严密的逻辑过程;要有简明

  扼要的文字表述;有单位的处理;有数字的运算……所有这些,无不涉及双基知识及个人的素养和潜力,都是要透过训练来加以提高改善的。那种蜻蜓点水式的解题,不可能在这些方面得到不断启发和训练,题解得再多,然而水平提高不快、工作不实,最后必定导致复习工作的低效率。

  教学只有在不断的反思中才会有所进步,也只有学会反思的教师,所谓“亲其师,信其道”,只有不断反思的教师,才会获得学生的喜爱,才会立于教学不败之地。

高三物理教案5

  1.某金属在一黄光照射下,正好有电子逸出,下述说法中,哪种是正确的 ( )

  A.增大光强,而不改变光的频率,光电子的最大初动能将不变

  B.用一束更大强度的红光代替黄光,仍能发生光电效应

  C.用强度相同的紫光代替黄光,光电流强度将不变

  D.用强度较弱的紫光代替黄光,有可能不发生光电效应

  答案 A

  要点二 光的波粒二象性

  2.物理学家做了一个有趣的实验:在光屏处放上照相用的底片.若减弱光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片只能出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果有下列认识,其中正确的是 ( )

  A.曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的波动性

  B.单个光子通过双缝后的落点可以预测

  C.只有大量光子的`行为才能表现出光的粒子性

  D.干涉条纹中明亮的部分是光子到达机会较多的地方

  答案 D

  题型1 对光电效应规律的理解

  【例1】关于光电效应,下列说法正确的是 ( )

  A.光电子的最大初动能与入射光的频率成正比

  B.光电子的动能越大,光电子形成的电流强度就越大

  C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大

  D.对于任何一种金属都存在一个最大波长,入射光的波长必须小于这个波长,才能产生光电 效应

  答案 D

  题型2 光电效应方程的应用

  【例2】如图所示,一光电管的阴极用极限波长为 0的钠制成.用波长为的紫外线照射阴极,光电管阳极A和阴极K之间的电势差为U,光电流的饱和值为I.

  (1)求每秒由K极发射的电子数.

  (2)求电子到达A极时的最大动能.(普朗克常量为h,电子的电荷量为e)?

  答案 (1)

  题型3 光子说的应用

  【例3】根据量子理论,光子的能量E和动量p之间的关系式为E=pc,其中c表示光速,由于光子有动量,照到物体表面的光子被物体吸收或反射时都会对物体产生压强,这就是光压,用I表示.

  (1)一台二氧化碳气体激光器发出的激光,功率为P0,射出光束的横截面积为S,当它垂直照射到一物体表面并被物体全部反射时,激光对物体表面的压力F=2pN,其中p表示光子的动量,N表示单位时间内激光器射出的光子数,试用P0和S表示该束激光对物体产生的光压I.

  (2)有人设想在宇宙探测中用光作为动力推动探测器加速,探测器上安装有面积极大、反射率极高的薄膜,并让它正对太阳,已知太阳光照射薄膜对每1 m2面积上的辐射功率为1.35 kW,探测器和薄膜的总质量为M=100 kg,薄膜面积为4104 m2,求此时探测器的加速度大小(不考虑万有引力等其他的力)?

  答案 (1)I= (2)3.610-3 m/s2

  题型4 光电结合问题

  【例4】波长为 =0.17m的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应强度为B的匀强磁场中,做最大半径为r的匀速圆周运动时,已知rB=5.610-6 Tm,光电子质量m=9.110-31 kg,电荷量e=1.610-19 C.求:

  (1)光电子的最大动能.

  (2)金属筒的逸出功.

  答案 (1)4.4110-19 J (2)7.310-19?J

高三物理教案6

  一、动量

  1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg

  2、动量和动能的区别和联系

  ①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

  ②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

  ③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

  ④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk

  3、动量的变化及其计算方法

  动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:

  (1)P=Pt一P0,主要计算P0、Pt在一条直线上的情况。

  (2)利用动量定理 P=Ft,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。

  二、冲量

  1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。单位是N

  2、冲量的.计算方法

  (1)I=Ft.采用定义式直接计算、主要解决恒力的冲量计算问题。

  (2)利用动量定理 Ft=P.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。

  三、动量定理

  1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或 Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间t内受合力为F合,合力的冲量是F合质点的初、未动量是 mv0、mvt,动量的变化量是P=(mv)=mvt-mv0.根据动量定理得:F合=(mv)/t)

  2.单位:牛秒与千克米/秒统一:l千克米/秒=1千克米/秒2秒=牛

  3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

  (2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

  (3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.

  4.应用动量定理的思路:

  (1)明确研究对象和受力的时间(明确质量m和时间t);

  (2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);

  (3)规定正方向,目的是将矢量运算转化为代数运算;

  (4)根据动量定理列方程

  (5)解方程。

  四、动量定理应用的注意事项

  1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

  2.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时F则是合外力对作用时间的平均值。

  3.动量定理公式中的(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

  4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

  5.用动量定理解题,只能选取地球或相对地球做匀速直线运动的物体做参照物。忽视冲量和动量的方向性,造成I与P正负取值的混乱,或忽视动量的相对性,选取相对地球做变速运动的物体做参照物,是解题错误的常见情况。

高三物理教案7

  教学目标

  1、知识与技能

  (1)了解康普顿效应,了解光子的动量

  (2)了解光既具有波动性,又具有粒子性;

  (3)知道实物粒子和光子一样具有波粒二象性;

  (4)了解光是一种概率波。

  2、过程与方法:

  (1)了解物理真知形成的历史过程;

  (2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;

  (3)知道某一物质在不同环境下所表现的不同规律特性。

  3、情感、态度与价值观:

  领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

  教学重点:

  实物粒子和光子一样具有波粒二象性

  教学难点:

  实物粒子的波动性的理解。

  教学方法:

  教师启发、引导,学生讨论、交流。

  教学用具:

  投影片,多媒体辅助教学设备

  (一)引入新课

  提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。

  我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?

  (二)进行新课

  1、康普顿效应

  (1)光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。

  (2)康普顿效应

  1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。

  (3)康普顿散射的实验装置与规律:

  按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现 的现象,称为康普顿散射。

  康普顿散射曲线的特点:

  ① 除原波长 外出现了移向长波方向的新的散射波长

  ② 新波长 随散射角的增大而增大。波长的偏移为

  波长的偏移只与散射角 有关,而与散射物质种类及入射的X射线的波长 无关,

  = 0.0241=2.4110-3nm(实验值)

  称为电子的Compton波长

  只有当入射波长 与 可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。

  (4)经典电磁理论在解释康普顿效应时遇到的困难

  ①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。

  ②无法解释波长改变和散射角的关系。

  (5)光子理论对康普顿效应的解释

  ①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。

  ②若光子和束缚很紧的`内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。

  ③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。

  (6)康普顿散射实验的意义

  ①有力地支持了爱因斯坦光量子假设;

  ②首次在实验上证实了光子具有动量的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。

  2、光的波粒二象性

  讲述光的波粒二象性,进行归纳整理。

  (1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

  (2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

  3、光的波动性与粒子性是不同条件下的表现:

  大量光子行为显示波动性;个别光子行为显示粒子性;光的波长越长,波动性越强;光的波长越短,粒子性越强。光的波动性不是光子之间相互作用引起的,是光子本身的一种属性。

  例题:已知每秒从太阳射到地球上垂直于太阳光的每平方米截面上的辐射能为1.4103J,其中可见光部分约占45%,假设认为可见光的波长均为0.55m,太阳向各个方向的辐射是均匀的,日地之间距离为R=1.51011m,估算出太阳每秒辐射出的可见光的光子数。(保留两位有效数字)

高三物理教案8

  中学物理教学改革的重点是课堂教学方法改革,这是实现中学物理教学目标和任务,全面提高教学质量的重要途径。我们认为要对高中物理的课堂教学方法实施改革,能够从以下几方面思考:

  一、从物理学科特点出发,改善课堂教学方法。

  实验是物理学的基础,也是物理学科的特点,物理教学离不开实验,因此,物理课堂教学改革首先要加强实验教学。

  1、创造条件,让学生更多地动手实验,提高学生观察实验潜力。

  凡是实验性较强的教材,教师要采用让学生动手做实验的教学方法,同时还要设法把一些演示实验改为学生实验,并增加课外小实验,对于学生分组实验,不仅仅要做,而且还要认真做好。总之,教学中要突出学生的实验活动,使学生在实验中动眼看、动手做、动嘴讲、动脑想,从而掌握物理知识和技巧,提高实验潜力。

  2、实验教学还要着重教给学生观察的方法,用科学的观察方法去启发、引导、示范,努力提高学生的实验观察潜力。同时还要加强实验观察方法的培养,要透过对学生进行实验思想、实验方法等科学方法教育(如放大法、比较法、代替法、转换法、比较法、平衡法和模型法等)帮忙学生深刻理解实验、培养实验潜力,开拓创造性思维。

  二、从物理教学资料出发,改善课堂教学方法。

  物理课堂教学方法的选取,要受到教材资料的制约,教材资料决定课堂教学方法的选取,也决定着教师与学生的具体双边活动的方式和方法。

  首先,务必突出教学方法的优化选取,我们选取教法应从教材资料实际出发,在众多教学方法中进行比较,最后得出经过优化选取的教学方法。一堂成功的物理课,通常是几种教学方法的有机组合,而不是几种教法的随意凑合,必须是经过教师的精心设计、灵活地、科学地、创造性地进行优化选取、认真实施的结果。

  第二,还要改革教师在课堂的讲解方式。教师在课堂上讲解,务必具有强烈的针对性、启发性和综合性,在课堂讲解,可随资料的不同采取相应的不同方式:如对教材资料从知识结构、逻辑关系推理论证方法等作完整、全面的讲解;对实验性较强的物理概念和规律,在做好实验的基础上作启发式的讲解;对重点、难点、关键资料或学生容易发生差错的问题,作点拨式讲解;在学生独立阅读、独立思考或进行练习之前,作提示性讲解;根据学生在预习、自学或复习中所提疑点,作释疑性讲解。

  总之,课堂教学要充分调动学生的学习用心性、主动性和自学性,不同类型的教学资料,教师应组织学生进行不同的活动。三、从学生的心理发展特征和潜力基础出发,改善课堂教学方法。

  高中学生随着年龄的增长和知识的增多有明显的独立性和兴趣倾向,学习自觉性和独立性比强,具有必须的思考潜力和自学潜力,课堂中常期望独立思考求解,学习气氛比较沉闷。这给教师了解学生带来必须的困难,针对这种状况,一般可采取下列方法:加强讲解的目的.性和针对性,个性是讲解时要注意反馈系统运用,如作业、讨论、考试中的反馈信息,以便有的放矢地进行教学;进一步培养学生独立学习的潜力把教师的讲解与学生的自学活动结合起来;将教师的讲述和学生的讨论、回答问题等结合起来,使得课堂教学成为师生的共同活动;充分利用机会,让学生进行各种口头的、书面的练习。

  四、从教学关系出发,改善课堂教学方法。

  中学物理课堂教学改革的中心问题,是处理好“主导”与“主体”的关系,实现教与学的统一。因此,务必加强课堂上教与学之间的交流活动

  加强师生之间的交流活动,教师是交流的主导一方,其作用是根据学生的实际状况,创设最优学习情景,有目的、有计划地开展各种教学活动,以各种有效的方法,引导学生学好物理知识。但教师的活动不能离开学生这个主体,教学中应突出学生的主体地位,努力创造条件让学生更多地参与教学活动,使学生用心主动地获取知识信息,发展各方面的潜力。

  可见,教师与学生是组成教学的两个最基本的因素,教师在课堂上的各项活动少不了学生的配合;而学生在课堂上的各项活动也离不开教师的指导。所以,努力使师生之间的交流活动贯穿于整个教学过程之中,是发挥教师的主导作(20xx年小学语文四年级《触摸春天》教学反思案例)用的根本。

  总之,物理教学应根据不同的教学资料、不同的学生实际、不同的实验条件,灵活而切合实际地选取不同的教法,用心探索和认真实践物理课堂教学的最优方法,深化物理课堂教学方法改革,努力提高物理教学质量。

高三物理教案9

  1、研究带电物体在电场中运动的两条主要途径

  带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:

  (1)力和运动的关系--牛顿第二定律

  根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.

  (2)功和能的关系--动能定理

  根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.

  2、研究带电物体在电场中运动的两类重要方法

  (1)类比与等效

  电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.

  (2)整体法(全过程法)

  电荷间的相互作用是成对出现的',把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.

  电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算

高三物理教案10

  物体贮藏着巨大的能量是不容置疑的,但是如何使这样巨大的能量释放出来?从爱因斯坦质能方程同样可以得出,物体的能量变化△E与物体的质量变化△m的关系:△E=Δmc2

  单个的质子、中子的.质量已经精确测定。用质谱仪或其他仪器测定某种原子核的质量,与同等数量的质子、中子的质量之和相比较,看一看两条途径得到的质量之差,就能推知原子核的结合能。

  说明:

  ①物体的质量包括静止质量和运动质量,质量亏损指的是静止质量的减少,减少的静止质量转化为和辐射能量有关的运动质量。

  ②质量亏损并不是这部分质量消失或转变为能量,只是静止质量的减少。

  ③在核反应中仍然遵守质量守恒定律、能量守恒定律。

  ④质量只是物体具有能量多少及能量转变多少的一种量度。

  阅读原子核的比结合能,指出中等大小的核的比结合能最大(平均每个核子的质量亏损最大),这些核最稳定。另一方面如果使较重的核分裂成中等大小的核,或者把较小的核合并成中等大小的核,核子的比结合能都会增加,这样可以释放能量供人使用。

  巩固练习

  已知:1个质子的质量mp=1.007277u,1个中子的质量mn=1.008665u.氦核的质量为4.001509u.这里u表示原子质量单位,1u=1.660566×10-27kg.由上述数值,计算2个质子和2个中子结合成氦核时释放的能量。(28.3MeV)

高三物理教案11

  一、电流、电阻和电阻定律

  1.电流:电荷的定向移动形成电流.

  (1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差.

  (2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。

  ①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev.

  ②表示电流的强弱,是标量.但有方向,规定正电荷定向移动的方向为电流的方向.

  ③单位是:安、毫安、微安1A=103Ma=106A

  2.电阻、电阻定律

  (1)电阻:加在导体两端的电压与通过导体的电流强度的比值.R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关.

  (2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比. R=L/S

  (3)电阻率:电阻率是反映材料导电性能的物理量,由材料决定,但受温度的影响.

  ①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的电阻.

  ②单位是:m.

  3.半导体与超导体

  (1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5m ~106m

  (2)半导体的应用:

  ①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化.

  ②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用.

  ③晶体二极管、晶体三极管、电容等电子元件可连成集成电路.

  ④半导体可制成半导体激光器、半导体太阳能电池等.

  (3)超导体

  ①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象.

  ②转变温度(TC):材料由正常状态转变为超导状态的温度

  ③应用:超导电磁铁、超导电机等

  二、部分电路欧姆定律

  1、导体中的电流I跟导体两端的'电压成正比,跟它的电阻R成反比。 I=U/R

  2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件.R2﹥R1 R2

  3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I~U或U~I图象,对于线性元件伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的.

  注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I认为电阻R随电压大而大,随电流大而小.

  ②I、U、R必须是对应关系.即I是过电阻的电流,U是电阻两端的电压.

  三、电功、电功率

  1.电功:电荷在电场中移动时,电场力做的功W=UIt,

  电流做功的过程是电能转化为其它形式的能的过程.

  2.电功率:电流做功的快慢,即电流通过一段电路电能转化成其它形式能对电流做功的总功率,P=UI

  3.焦耳定律;电流通过一段只有电阻元件的电路时,在 t时间内的热量Q=I2Rt.

  纯电阻电路中W=UIt=U2t/R=I2Rt,P=UI=U2/R=I2R

  非纯电阻电路W=UIt,P=UI

  4.电功率与热功率之间的关系

  纯电阻电路中,电功率等于热功率,非纯电阻电路中,电功率只有一部分转化成热功率.

  纯电阻电路:电路中只有电阻元件,如电熨斗、电炉子等.

  非纯电阻电路:电机、电风扇、电解槽等,其特点是电能只有一部分转化成内能.

高三物理教案11篇 高三物理复习课教案相关文章:

高一物理优秀教案7篇 高一物理教学教案

物理教学教案12篇(物理教案优秀示范)

高三下学期物理教学工作总结7篇 高三年级物理教学工作总结

高三下学期物理教学计划9篇(高三第二个学期物理教学计划)

八年级物理教案11篇

高三物理教学的工作总结12篇 高三物理教学工作总结个人

物理八年级上册教案12篇

高三物理教学工作总结模板3篇(高三物理教学经验总结)

高一物理教案 12篇(高一物理教案必修二)

沪科版八年级物理教案4篇 人教版八年级物理力教案