下面是范文网小编整理的四年级的数学人教版下册教案12篇 4年级数学下册教案人教版,供大家赏析。
四年级的数学人教版下册教案1
学习内容:
小数的意义和产生,课本32-33页内容。
学习目标:
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
学习重难点:
小数的意义和计算单位及进率
学习过程:
课前谈话
孩子们们,平时喜欢猜谜语吗?(喜欢)
老师这里有一个谜语,大家想猜一猜吗?(可以)
请竖起你的小耳朵,认真听,看谁能猜中?
生来公平,拿在手中,要问长短,它最分明。打一度量器具。
生猜尺子。
师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!
咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!
一、教学小数的产生:
首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--
课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!
师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子
师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。
师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。
教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。
在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。
点击出示“你知道吗?”课件展示小数的历史。
这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。
设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。
二、探究小数的意义:
1、认识一位小数
师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。
师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书
师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书
师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书
师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。
师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。
师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?
生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。
生2:我发现,分母是10的分数可以写成一位小数。
师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。
设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。
2、认识两位小数
师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?
师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,
找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01
师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的'想法?小数可以写为?说说你的想法孩子,说的不错!
6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?
师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?
生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。
设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。
3、认识三位小数
同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)
师:孩子,那这样的12份呢?师板书。123份呢?师板书。
师:指板书,从这里你们又发现了什么?
生1:我发现分母是1000的分数可以写成三位小数。
生2:三位小数表示千分之几。
师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:请同学们想一想四位小数表示什么?五位小数呢?
生:四位小数表示万分之几,五位小数表示十万分之几。
师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?
生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......
设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!
4、学习小数单位
孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;
那么两位小数的计数单位是多少呢?请思考!
师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。
师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。
师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,
师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。
5、学习单位进率
以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?
那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.
三:巩固练习
学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。
1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。
2、做一做,填空。
0.3里面有()个0.1
0.09里面有()个0.01。
0.35里面有()个0.01.
0.006里面有()个0.001。
0.136里面有()个0.001.
4个()是0.004.
3、练一练
四、课堂总结
同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?
同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!
四年级的数学人教版下册教案2
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:小数的性质。
教学难点:理解小数的性质。
教具学具准备:课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的'想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
0.3=0.30
1.2=1.20
四年级的数学人教版下册教案3
一、教学内容
本单元的主要内容有:小数加、减法、混合运算以及整数的运算定律推广到小数。以上内容具体编排如下表:竖式计算,理解算理
简单的小数加减法小数加减法的一般计算方法
小数连加、连减的计算
小数加减混合计算一般的小数混合加减运算
带括号的小数加减混合计算
整数运算定律在小数小数加减简便计算
加减混合计算的推广能应用合适的运算定律进行
小数加减法的简算
二、教学目标
1、让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行小数加、减混合运算。
2、使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的.数感。
3、使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减计算能力的自觉性。
三、教学重点
理解小数加、减法的竖式计算方法,能正确地进行小数竖式计算和加、减混合运算。
四、教学难点
能运用运算定律中的加法交换律和加法结合律推广到小数中灵活进行简便计算。
五、教学策略
1、对于小数加减法,因为学生已经在三年级就已经通过元、角、分的加减初步认识了小数加减法的竖式计算方法,并且在第四单元学习了小数的产生及意义和
计数单位。所以本单元的学习重点应是让学生联系整数加减法的算理和小数的意义理解小数加减法竖式计算方法及法则。本单元意图让学生学会把知识的特殊性向一般性转化,遵循小学生由浅入深的渐进式学习特点,把小数加减法剥离具体情境抽象出小数加减的计算法则,是一个从具体到抽象的过程。
2、本学期第一单元学生就已经学了整数混合运算,本单元让学生理解整数混合运算的运算顺序在小数混合运算中同样适用。同时学生已经在本册书第三单元学了整数运算定律,本单元主要是将整数运算定律中的加法交换律和加法结合律推广到小数中应用。通过推广,帮助学生拓展定律的使用范围拓宽自己的知识框架,产生知识的正迁移,使学生了解数学知识的连贯性和联系特性。
3、在以往的教学中,学生数位不容易对齐。特别要注意数位不一一对应的加减法,小数部分不够减的情况,不少学生则容易把这种不够减的减法计算做成加法,特别是整数减小数的情况。在教学中要引起足够的重视。
六、教学时间
新课和练习6课时、单元测验2课时,合计8课时。
第一课时小数加减法
教学内容:
教材第95—97页例1、2,“做一做”。
教学目标:
1、使学生理解掌握小数加、减法的方法。
2、培养学生的计算能力。
3、培养学生细心检查的好习惯。
教学重点:
计算方法。
教学难点:
退位减法。
教学准备:
多媒体课件
教学过程:
一、目标导入
1、出示学习目标:
(1)通过本节课的学习要理解掌握小数加、减法的方法。
(2)通过计算逐步提高计算能力。
(3)养成细心检查的好习惯。
2、出示自学提示。
仔细看数学书95、96、97页例1、例2。
四年级的数学人教版下册教案4
教材分析:
(1)知识体系:
(2)本册教材有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。但是难点集中,教学中要适当进行分割、补充。真正构建比较完整的知识结构。
教学目标
1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教材简析
1.有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。
2.从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。
3.重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
教学重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算
教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算
教学策略
1.充分利用学生已有的感性认识,促进学习的迁移。
2.加强数学与现实世界的联系,促进知识的理解与应用。
3.注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
第一课时
教学内容:加法交换律和结合律【例1,例2】
教学目标
1.结合具体的情境,引导学生认识和理解加法交换律和结合律的含义。
2.能用字母式子表示加法交换律和结合律,初步学会应用加法交换律和结合律进行一些简便运算。培养学生观察,比较,抽象,概括的初步思维能力。
3.体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。
教学重点:认识和理解加法交换律和结合律的含义。
教学难点:引导学生抽象概括加法交换律和加法结合律。
教学过程:
一、创设情境
1. 引入谈话。
在我们班里,有多少同学会骑车?你最远骑到什么地方?
骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!
(多媒体演示:李叔叔骑车旅行的'场景。)
2. 获得信息。
问:从中你可以得到哪些信息? (学生同桌交流,然后全班汇报。)
问题是什么?
3. 解决问题。
问:能列式计算解决这个问题吗? (学生自己列式并口答。)
二、探索规律
1. 加法交换律。
(1)解决例1的问题。 根据学生回答板书:
40+56=96(千米) 56+40=96(千米)
问:两个算式都表示什么?得数怎样?○里填什么符号? 40+56○56+40,
(2)你能照样子再举几个例子吗?
(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。
(4)反馈交流。 两个加数交换位置,和不变。
(5)揭示定律。
问:①知道这条规律叫什么吗?
②把加数换成其他任意的数,交换律还成立吗?
③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)
④交流反馈,然后看书:看看课本上的小朋友是怎么说的。
⑤根据加法交换律对口令。
师:25+65=______ 78+64=______
⑥完成课本第18页下面的“做一做”1
2. 加法结合律。
多媒体展示:李叔叔三天骑车的路程统计。
(1) 找出信息解决问题。
问:你能解决李叔叔提出的问题吗? 学生独立完成后交流。
多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。
问:通过线段图演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)
我们来研究把三天所行路程依次连加的算式,可以怎样计算:
比较 88+104+96 88+104+96
=192+96 =88+200
=288 =288
为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)
出示(88+104)+96○88+(104+96),怎么填?
(2)你能再举几个这样的例子吗?
问:观察比较这些算式,说说你发现了什么秘密?(鼓励学生用自己的话来说。)
(3)揭示规律。
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。
(4)用符号表示。(学生独立完成,集体核对。)
(▲+)+●=____+(____+____)
(a+b)+c=____+(____+____)
(5)问:①用语言表达与用字母表示,哪一种更一目了然?
②这里的a、b、c可以表示哪些数?
(6)完成P18做一做2
三、练习巩固
1. 指出下面哪几道题运用了加法运算定律,分别运用了什么运算定律。
(1) 验算:(运用了加法交换律)
(2)用“凑十法”7+9=6+(1+9)(运用了加法结合律)
(3)教材练习五
四、小结
1. 今天我们发现了哪些数学规律?
2. 这些运算定律是
四年级的数学人教版下册教案5
一、教学目标
(一)知识与技能
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的`计数单位及它们间的进率。
三、教学准备
米尺、彩带、磁条。
四、教学过程
(一)创设情境,导入新课
1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
四年级的数学人教版下册教案6
一、教学内容
认识折线统计图。
二、编排特点
第一学段:第二学段:
经历统计的过程。
单式、复式统计表
条形统计图(以1代2、5)平均数
1.由条形统计图引出折线统计图,突出折线统计图的特点。
由于学生对条形统计图比较熟悉,教材由条形统计图引出折线统计图,通过对比使学生看到它们的异同点:都可以看出数量的多少,但折线统计图还能看出数量增减的变化。
2.提供富有现实意义的素材。
这一点是编排内容编排的共同特点,因为统计与生活有密切的联系,教材在编排时都注意提供学生熟悉了解的现实情境作为统计的素材。
学生参观科技展的人数、身高的变化、月平均气温、病人的体温记录、旅游消费情况等。
“生活中的数学”栏目中,引入2003年北京市非典疫情的数据,使学生在了解生活常识的同时,充分认识统计的现实意义。
这一单元,我上学期就已经教了,
三、总体感觉:
1、知识条理清晰,学习难度不大,学生掌握较好.
2、与生活联系紧密,信息量大,学生乐学。
四、温馨提示:
正确把握教学目标——教参:与前面的.教学要求一样,我们不要求学生会制作完整的折线统计图,只要能根据数据把统计图补充完整并描述、分析数据就可以了。有能力的学生可以尝试制作,但并不对此作统一要求。
五、课时划分
第一课时
第二课时
第三课时
第四课时
例1及做一做
例2及练习十九的2、3两题
练习十九
练习十九
第一课时
教学内容:单式折线统计图
教学重点:知道折线统计图的特点,能学会用折线统计图描述数据,并学会分析折线统计图。
教学难点:能学会用折线统计图描述数据,并学会分析折线统计图。
教学准备:
1、学生调查生活中那里用到折线统计图。
2、教师准备一周天气预报的资料。
3、教师准备课件。
教学过程:
一、谈话导入。
师:你们去过科技活动中心吗?喜欢去吗?
到科技活动中心不仅增长了不少科学知识,还锻炼了自己的实践能力。看,这些同学也喜欢参加科技活动,他们正在参观科技展!(课件出示例1主题图)
二、教学折线统计图。
1、师:科技中心的工作人员把1998~2003年某市中小学生参观科技展人数制成条形统计图。(课件出示条形统计图)图中横轴、纵轴各表示什么?从图中可以获得哪些信息?(同桌一起说一说)
师:条形统计图通过直条的长短,很形象、直观地显示出各年参观的人数,及哪年人数最多?哪年人数最少?
2、师:某市中小学生参观科技展人数的统计图,还可以这样画。(课件演示从
条形统计图变为折线统计图)图中横轴、纵轴同样各表示什么?(课件横轴、纵轴闪烁)
这图怎样表示各年的人数的?(用点表示数量的多少)
从图中还能发现1998~1999年参观人数有什么变化?
以后各年呢?(同桌互相说一说)
图中怎样表示参观人数变化情况的?(线的方向)
我们把这样的统计图叫
教材分析
本课是人教版九年义务教育教材四年级下册第七单元《统计》的内容,是继前几册《统计》的内容而编排的,前面学生已经掌握了一点有关折线统计图的知识,本节主要是让学生学习根据统计表中的数据制作单式折线统计图,学会看懂此种统计图并学习根据统计图和数据进行数据变化趋势的分析,进一步体会统计在生活中的作用,形成统计的观念。
四年级的数学人教版下册教案7
教学内容
小数的意义
教学目标
1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。
2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。
重点难点
重点:体会十进制分数与小数的关系,初步理解小数的意义。
难点:能够正确进行十进制分数与小数的互化。
教具准备
课件、正方形纸2张。
教学过程
一、情境导入。
1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?
生:好。
2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)
铅笔:0.1元一支圆珠笔:1.11元一支
猪肉:9.5元一斤黄瓜:5.96元一千克
教师:上面这些物品的价格有什么特点?
学生:都不是整元数。(都是小数。)
教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?
学生依次读出:零点一、一点一一、九点五、五点九六。
师:大家知道这些小数是几位小数吗?
生:......
2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
生:身高体重跳高跳远
小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。
板书:小数的意义
二、自主探究。
1.一位小数的意义
a.那么多的小数,我们今天就从0.1开始入手研究。
b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?
学习单元角米分米网格图
c.生反馈0.1表示什么意思。
d.思考:我们选用的图都不一样,为什么都可以表示0.1?
你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。
生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。
生:......
2.两位小数的意义
师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?
a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?
学习单元分米厘米网格图
b.生反馈0.01表示什么意思。
c.思考:你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。
生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的`也可以写成0.01元。
生:......
3.三位小数的意义
我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()
小数我们写的完吗?其实呀,小数的位数越多就分的越细。
大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?
三、巩固练习
教师:0.8可以表示成分数吗?可以表示成小数吗?
学生:分别是和0.7。
教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)
同学们在小组内进行游戏交流,教师巡视指导。
四、探究结果报告。
教师:通过刚才游戏,你们发现了什么?(出示课件)
师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)
2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)
3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)
四、教师小结。
小数中,每相邻两个计数单位间的进率都是10。
五、课外拓展。
分享最美数字0.618
四年级的数学人教版下册教案8
教学内容
人教版四年级下册教材第32、33页的例1及“做一做”。
内容简析
教材选择学生熟悉的教室情境简要地呈现了“小数产生”的过程,通过实际的测量活动,体会小数产生的必要性。考虑到学生对长度单位比较熟悉,教材选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过将分米、厘米、毫米改写成米,说明把低级单位的数改写成高级单位的数可以用分母是10、100、1000……的分数表示,再进一步用小数表示。
教学目标
1.使学生了解小数的产生。
2.让学生在初步认识分数和小数的基础上,弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系,进一步理解小数的意义。
3.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
4.培养学生的观察、分析、推理能力。
教学重难点
弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系。
教法与学法
1.主要采用自主探究、讨论、发现的教学方法,先引导学生回忆毫米、厘米、分米与米的关系,并用分数表示,再把分数化成小数,从而了解小数的意义。
2.通过观察、分析、讨论、类推、迁移等学习方式,培养学生的自主学习意识和创新意识,学会探究问题的方法。
教学过程
一、情景创设,导入课题
经典文学引入:你们熟悉《三字经》吗?我们来一起背几句好吗?《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?(意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。)
(教师从右往左板书:10000 1000 100 10 1)
谈话:看来《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从左往右看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?
提问:从右往左看,10000、1000、100、10、1,接下去又是哪些数呢?它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。
【品析:从《三字经》中的数学问题入手,吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义埋下伏笔。】 游戏引入:同学们喜欢玩游戏吗?今天老师和你们一起玩个游戏,名字叫“估一估、测一测”。先请同学们估一估老师和你伙伴的身高?再测量他们的实际数据。
揭示小数的产生。
谈话:刚才在测量身高的时候,得到的结果是1米多,如果用“米”作单位,就得不到整数的结果。像这样在实际测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。由于日常生活和生产的`需要,从而产生了小数。
【品析:由日常生活中熟悉的测量情景入手,引起学生的学习兴趣,也使学生认识到数学与生活的紧密联系,数学学习显得更有意义。】
二、师生合作,探究新知
1.小数的产生。
引导学生观察教材第32页例1,在进行测量和计算时,往往不能正好得到整数的结果,这时也常用小数来表示。
提问:我们知道1米=10分米=100厘米=1000毫米,那么以分米、厘米、毫米为单位的整数怎么用以米单位的小数表示呢?
2.认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
提问:①用米作单位,1分米怎样用分数来表示? 为什么?(结合分数的意义说明)
②用小数表示是:0.1米。说说0.1米表示什么?
把1米平均分成10份,每份是1分米,是1/10米,也可以写成0.1米。
板书:1分米=1/10米=0.1米。
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、0.7米表示什么意思。
3.认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,1厘米怎样用分数来表示? 为什么?
②用小数表示是:0.01米。说说0.01米表示什么。
把1米平均分成100份,每份是1厘米,是1/100米,也可以写成0.01米。
板书:1厘米=1/100米=0.01米。
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米表示什么意思。
4.认识三位小数。(出示米尺)
(1)在米尺上找出1毫米的地方。
①用米作单位,1毫米怎样用分数来表示? 为什么?
②用小数表示是:0.001米。说说0.001米表示什么。
把1米平均分成1000份,每份是1毫米,也是1/1000米,用小数表示是0.001米。
板书:1毫米=1/1000米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思。
明确:照这样分下去,还可以得到万分之一米……也可以写成0.0001米……
像刚才小数点后面有一位的小数叫一位小数,有两位的小数叫两位小数……
在教学1分米=1/10米=0.1米时,先让学生初步感悟十进分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识两位小数、三位小数,从而归纳出小数的意义。
【品析:此环节合理安排引导和放手的时机,给学生自主探索的空间,加深学生对小数的认识和理解。】
三、反馈质疑,学有所得
质疑1:什么样的分数可以用一位、两位、三位……小数来表示?
分母是10、100、1000……的分数分别可以用一位、两位、三位小数表示。
质疑2:小数的计数单位是什么?(展开讨论)
十分之一、百分之一、千分之一……,分别写作0.1、0.01、0.001……
【品析:引导学生进行观察,使学生始终参与到概念的探究过程中,通过比较、归纳、分析和综合理解小数、分数之间的关系,最后抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。】
四、课末小结,融会贯通
1.这节课我们学习了什么?你知道了什么?你还有什么问题?
帮助学生梳理本节课知识:
(1)小数的意义:把单位“1”平均分成10份、100份、1000份……这样的一份或几份可以用分母是10、100、1000……的分数表示,也可以用小数表示。
(2)小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
2.认识了新的朋友“小数”,那么它该怎样读呢?听到小数又该怎样写呢?在下节课的研究中你就会明白了。
【品析:对知识点进行梳理,培养学生的概括能力和语言表达能力。】五、教海拾遗,反思提升
示例:
1.有关小数,三年级时学生已有了初步认识,在生活中也有所接触,如购物中的数学问题等。本节课,我通过让学生量一量来引入本课所学知识,从现实情景中感受小数的产生,促进学生进一步学习的欲望,激发学生学习的积极性。
2.重视学生的自主探究。在引入小数意义的教学时,学生在教师的指导下更多地是通过自主探究、深入感悟开展学习活动的。教师给学生提供了很大的学习空间。本节课学习的基础是分数的初步认识,教师利用米尺,将分母是10的分数与一位小数相联系,通过学生的观察、体验,感悟新知识,掌握新知识,并以此为基础,进一步探究两位小数、三位小数的意义。课堂教学中始终应该关注学生的有效学习,发挥学生的主体作用。
3.课堂结构体现层次性。课堂教学安排要努力体现学生的认知规律,先易后难,先扶后放。在本节课的教学中所采用的“一引、二放、三收获”正好体现了我的设计思想。在小数意义和小数计数单位教学中,首先通过教师的引导,让学生建立正确的概念,如借助直观工具建立一位小数的意义。我认为,在学生头脑中形成正确表象非常重要。在小数计数单位的教学中,我也同样如此安排。
我的反思:
板书设计
小数的产生和意义
小数的产生:在进行计算和测量时,往往不能正好得到整数的结果,这时常用小数来表示。
整数 分数 小数
一位小数:1分米=1/10米=0.1米
两位小数:1厘米=1/100米=0.01米
三位小数:1毫米=1/1000米= 0.001米
小数的计数单位是:十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位之间的进率是10。
四年级的数学人教版下册教案9
教学内容:
课本22页例3和做一做及练习四1、2题。
教学目标:
1、通过活动使学生学会以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、通过学习,进一步提高学生的空间观念。
重点难点:
使学生进一步认识到位置关系的相对性。
教学用具:
挂图
教学过程:
一、创设情境生成问题
1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。
2、分别指两名学生,让大家根据方向说一说他们的位置关系。
(设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)
3、师:今天我们就来继续研究两个物体位置的相对关系。
(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)
二、探索交流解决问题
1、出示教材第22页例3主题图。
(1)让生观察地图
师:北京和上海两地相距大约1000千米,说一说,上海在北京的什么方向上?
①组织学生用直尺,量角器测量出上海在北京的`什么方向上。
师根据学生汇报板书:②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?
组织学生观察上图,在小组中讨论,然后交流说一说。
出示提示
1.确定以谁为观测点,并建立方向标。
2.用语言描述北京和上海的具体位置。
讨论后每组选出一名同学在班内汇报。
生汇报。
可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。
师对照图示指一指,肯定两种说法都是正确的。
师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。
观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。
四年级的数学人教版下册教案10
教学内容
人教版四年级下册教材第34、35页的例2、例3、例4及“做一做”。
内容简析
本节课借助学生已有的知识经验及生活经历,在生活中感受小数的读法和写法,通过大量的感性知识与数学活动,抽象、概括、提炼出小数的数位顺序表,使学生明确小数的数位名称及数位顺序,进一步体会生活中处处有数学的理念,从而达到巩固小数意义的目的。
教学目标
1.理解小数的数位顺序表,知道小数的构成及小数各位上的`数的含义。
2.掌握小数的读法与写法,会读、写小数,进一步理解小数的意义。
3.培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质。
教学重难点
教学重点:进一步掌握小数的意义,能比较熟练地读写小数。
教学难点:正确地说出小数部分每一位上的计数单位。
教法与学法
1.采用的教法是直观演示法、情景体验法和点拨法。从表象到抽象、感性到理性的设计层次符合小学生的认知规律,能有效地培养学生的自主学习能力。
2.具体的学法是合作讨论法、尝试与体验法、练习法,帮助学生养成好的自学习惯,学会与他人合作学习。
教学过程
一、情景创设,导入课题
生活情景引入:同学们,有个小朋友遇到了困难,你们愿意帮忙吗?小红和妈妈逛超市,但她不认识价格表。(课件出示播放超市物品与价格)
观察物品价格,指名说一说。(结合学生回答板书:5.98、0.85和2.60)
超市里的这些标价有什么共同特点?
揭示课题:超市里商品的价格都是用小数来表示的,这些小数该怎样读写呢?这节课我们将一起研究小数的读法和写法。(板书课题)
【品析:从学生熟悉的生活场景入手,容易引起学生的学习兴趣,也使数学与生活的联系更为紧密,数学学习显得更有意义。】
激趣引入:
抢答题:地球上长的最高的动物是什么?(学生抢答,猜测长颈鹿的身高)
出示教材第34页的情境图,学生读图,找出数学信息,教师板书小数。
【品析:这样的导入设计是为了激发学生的学习兴趣以及想要学的愿望,同时又为后面的学习提供了具体数据。】
故事引入:今天一大早,熊二就吵着要吃蜂蜜,熊大告诉它,只有回答出它提出的几个问题才会有蜂蜜吃。你愿意帮助熊二吗?
1.读出下面各数。
234 7093 31 10000 38950 0.7
2.回忆一下:你是怎样读出这些数的?整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?(一<个>、十、百、千……)
3.导入:在同学们的帮助下,熊二顺利拿到了蜂蜜。你知道吗,小数和整数一样,也有计数单位,也按照一定的顺序排列起来,这节课我们就来研究一下小数的数位顺序。
【品析:由学生喜爱的动画故事入手,容易引起学生的学习兴趣,同时又复习了整数的数位顺序和计数单位,为研究小数的数位顺序表打下了基础。】
二、师生合作,探究新知
1.教学小数的数位顺序表。
(1)观察教材第34页例2的主题图,从图中你得到了哪些信息?
(师生交流后,板书1.8、5.63、12.378)
(2)观察并思考:这些小数和我们以前学的数一样吗?这些小数是由哪几部分构成?
小结:像1.8、5.63、12.378……这样的数都是小数,这些小数都由三部分组成:整数部分、小数点和小数部分。
(板书:整数部分、小数点、小数部分)
(3)提问:小数点左边一位是什么位?计数单位是什么?表示什么?小数点右边一位的计数单位又是什么呢?
学生交流讨论:
四年级的数学人教版下册教案11
学习内容:教材第117页内容。
学习目标:
1、理解掌握植树问题的基本解题方法,并能解决一些实际生活中存在的与植树有关的问题。
2、掌握植树问题的第一种情况是“两端都要种”。(即间隔数比株数少1的情况)。
3、养成认真审题的好习惯。
学习重点:掌握“两端都要种的植树问题”的解题方法。
学习难点:掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。
学法指导:自主学习、合作探究。
教学课时:两课时
学习过程:
一、知识链接:
拿一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。
二、互动研讨:
自学课本117页回答以下问题。
1、要求准备多少棵树苗,必须先求出什么?
2、讨论:如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推断出间隔数比株数(多1还是少1)。所以,在100米的小路上共有个间隔点,那么就可以栽棵树。
小结:因为植树棵数总是比间隔数多1,这样我们就可以先求出树与树之间有多少个间隔,而每个间隔的长度是已知的,就可以求出一共可以植树多少棵。
列式计算:
3、在一条公路旁,每隔5米栽一棵树,起点和终点都栽,一共栽了10棵,那么这条路有多长?(比较和例1的不同,和小组讨论,得出结论。)
列式计算:
4、例1是已知( )和( ),求( )。而这道题是已知( )和( ),求( )。根据这两道题我们也可以得出两个公式。
株数=( )÷( )+1全长=(株数-1)×( )
三、自我总结:
这节课你有哪些收获?
四、达标测评:
1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
2、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
4、新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都要装)。一共需要多少盏路灯?
《植树问题二》导学案
学习内容:教材第118页内容。
学习目标:
1、理解掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第二种情况是“两端都不种”。(即间隔数比株数多1的情况)。
3、养成认真审题的好习惯。
学习重点:掌握“两端都要种的植树问题”的解题方法。
学习难点:掌握已知株数和全长求株距的`方法,以及已知株数和株距求全长的方法。
学法指导:自主学习、合作探究。
课时安排:两课时
学习过程:
知识链接:
1、已知株距和全长,怎样求棵数?
2、已知株距和棵数又怎样求全长呢?
二、互动研讨:
1、小游戏。拿出纸条,分别把它们等分成2段、3段、4段,要剪( )次、( )次、( )次,比较剪的次数和纸条的段数有什么关系。
我的发现:剪的次数比纸条的段数( )
2、自学课本第118页例2,回答以下问题:
还是两端都栽吗?
棵树与间隔数有什么关系?
两旁都不栽要先算什么?
3、我来算一算一共要栽几棵树?
要在小路两旁栽树,要先算出一旁需要栽多少棵树,那就要先求出一旁的间隔数:
小路一旁栽树多少棵?一共要栽多少棵树?
小结:这是植树问题的第二种情况“两端都不栽树”也就是棵数比间隔数( ),
棵数=( )÷( )-1,株距=( )÷( -1)。
4、讨论比较例1和例2的不同。
例1是两端都( ),所以棵数比间隔数( )
例2是两端都( ),所以棵数比间隔数( )
三、自我总结:
这节课你有哪些收获?
四、达标测评:
1、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
3、从王村到李村一共设有16跟高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
《植树问题三》导学案
编写人:修改人:审核人:许文良学习时间:使用人:四年级
学习内容:教材第120页内容。
学习目标:
1、理解掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2、掌握“植树问题”的第三种情况是“关于一个封闭图形的植树问题”。
3、养成认真审题的好习惯。
学习重点:掌握封闭图形中“植树问题”的解题方法。
学习难点:掌握已知株数和全长求株距的方法,以及已知株数和株距求全长的方法。
学法指导:自主学习、合作探究。
课时安排:两课时
学习过程:
一、知识链接:
1、已知株距和全长,怎样求棵数?(两端都栽)
棵树= ( )
2、已知株距和棵数又怎样求全长呢?(两端都不栽)
全长=
3、同学们做游戏,站成正方形,每边有3人,共有多少人?(画图用△表示)
二、互动研讨:
自学课本第120页内容,自学后完成下面的问题。
围棋盘的最外层每边能放19个棋子。最外层一共可以摆放多少棋子?
1、方法一:(图一)上下两边都有( )个棋子,左右两边两端的棋子都已数过,不能重复数,所以左右两边每边只需数( )个棋子,将它们加起来,就是一共的棋子个数。算式是:( )
2、方法二:(图二)每边只算一个端点,这样每边都有( )个棋子,共有4个( )。算式是:( )
3、方法三:每边的两端都不算,这样每边都有( )个棋子,共有4个( ),再加上4个端点的4个棋子,就是一共的棋子个数。算式是:( )
4、哪一种方法最简单?
三、自我总结:
这节课你有哪些收获?
今天学习了“植树问题”的第三种情况—封闭图形。封闭图形有几种,如:圆形、正方形、长方形、多边形等,因为首尾重合在一起,所以种树的棵数等于分成的段数。
四、达标测评:
1、64名学生在操场上做游戏,大家围成一个正方形,每边人数相等,四个顶点都有人,每边各有几名学生?
2、要在六边形的水池边上摆上花盆,要使每一边都有5盆花,最少需要几盆花?
3、为了迎接六一儿童节,学校举行团体操表演。四年级学生排成方阵,最外层每边站了15人,最外层一共有多少名学生?整个方阵一共有多少名学生?
4、圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需要几盏灯?
四年级的数学人教版下册教案12
第1课时 鸡 兔 同 笼
教学内容
人教版四年级下册教材第103~105的例1和“做一做”。
内容简析
“鸡兔同笼”问题是我国民间广为流传的数学趣题。例1是在古代趣题的基础上呈现了一道数据较小的“鸡兔同笼”问题。在引导学生探索解决问题方法的过程中,呈现了猜测、列表、假设等方法。
教学目标
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题。
3.在解决问题的过程中培养学生的逻辑推理能力。
教学重难点
教学重点:理解并掌握用假设法和列表法解决“鸡兔同笼”问题。
教学难点:理解用假设法的算理并能运用不同的方法解决实际问题。
教法与学法
1.为了更好地突出重点、突破难点,在本课主要以启发式为指导思想,采用情境导入、巧设疑问、引导探究等教法。
2.本课以观察比较、自主探究、交流讨论为主要学习方法。让学生多思、多说、多练,使学生由被动的学习转为积极主动参与学习。
承前启后链
复习:回顾方法的迁移和运用。
如:整数运算定律可以推广到小数。
学习:理解鸡兔同笼问题。
如:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
延学:用假设方法解决问题。
如:有2分、5分硬币共20枚,共8元4角,问2分、5分各有几枚。
教学过程
一、情景创设,导入课题
故事导入:同学们,老师假期游玩时,在一个农家小院里,看到一个老爷爷正在考他的小孙子,老爷爷出的题很有趣,于是我近前去看,发现那个小孩非常聪明,不管老爷爷怎么变化题目,他都能经过思考,回答上来。看到这种情况,我产生了一个想法,也想考考同学们,看同学们是否能赶上那个孩子。
今天我把那些题带来了,你们有信心和那个孩子比一比吗?
1.笼子里有10只鸡, 有( )个头, 有( )只脚。
2.笼子里有8只兔,有( )个头,有( )只脚。
3.笼子里有5只鸡和4只兔,有( )个头,有( )只脚。
4.笼子里从下面数有16只鸡脚和8只兔脚。有( )只鸡,有( )只兔,有( )个头。
5.鸡和兔同笼。从上面数,有8个头,从下面数,有26只脚,鸡有多少只?兔有多少只?【品析:导入部分出一些由易到难的问题,实质是解决鸡兔同笼问题的智力热身活动,为鸡兔同笼问题的揭示做好了巧妙的铺垫。学生在解题过程中,初步感知了生活中的鸡兔同笼趣题,知道了鸡、兔的头数与鸡、兔脚的只数之间的繁杂关系。好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。】 谜语导入:
1.出示谜语卡片。
顶上红冠戴 红红眼睛白白毛
身披五彩衣 长长耳朵短尾巴
能测天亮时 身披一件白皮袄
呼得众人醒 走起路来轻轻跳
(猜一动物) (猜一动物)
教师根据学生的回答,先后在黑板上出示鸡和兔的图片。
2.板书课题:鸡兔同笼。
3.用数学语言描述一下鸡和兔各有什么特征。
(预设:鸡和兔各有一个头,鸡有两只脚,两只翅膀,兔有四只脚。)【品析:激发学生学习兴趣问题的欲望,同时引出课题,为后面的教学做好铺垫。】 生活情境导入:同学们,你们喜欢看书吗?你们都喜欢看哪一类的书呢?老师也喜欢看书,最近我在书上遇到了一个问题,没能解决,同学们愿意帮我解决吗?是这样的:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?同学们知道这是哪一种类型的数学问题吗?这就是大约一千五百多年前,我国古代数学名著《孙子算经》中记载的“鸡兔同笼”问题。今天就让我们一起来研究古人留给大家的珍贵问题吧。
板书课题:数学广角——鸡兔同笼。【品析:这一引入给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】二、师生合作,探究新知
出示教材第104页例1,学生自己读题,并说说从中获得了哪些数学信息。
让学生理解:①鸡和兔共8只。 ②鸡和兔共有26只脚。
③鸡有2只脚。 ④兔有4只脚。
猜测:先猜一猜,鸡、兔各有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。
明确:不可能都是鸡,因为如果都是鸡就会有16只脚,而题目中是26只脚。也不可能都是兔,因为如果都是兔就会有32只脚。
小组活动:怎样才能确定我们猜测的结果对不对?请同学们分组探究解决问题的方法。
1.列表法
头数 鸡 兔 脚
8 1 7 30
8 2 6 28
8 3 5 26
8 4 4 24
根据鸡兔共8只的条件,假设鸡有1只,兔有7只,脚共有30只;鸡有2只,兔有6只,脚共有28只;鸡有3只,兔有5只,脚共有26只,符合题意。小结:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
2.假设法
方法一 : 假设笼中全部是鸡。
8×2=16(只)
(如果把兔全当成鸡一共就有8×2=16只脚)
26-16=10(只)
(把兔看成鸡来算,每只兔就少了两只脚,10只脚是少算了兔的`脚)
4-2=2(只)
(4-2=2表示把一只兔当成一只鸡就要少算2只脚)
兔:10÷2=5(只)
(把多少只兔当成鸡算就会少10只脚呢?10里面有几个2,就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
鸡:8-5=3(只)
(用鸡兔的总只数减去兔的只数就是鸡的只数)
方法二 : 假设笼中全部是兔。
很显然笼中共有8×4=32(只)脚,与实际脚26只不相符,多了6只脚。原因是我们把2条腿的鸡当成了兔,每只鸡看成一只兔,就比实际多了4-2=2(只)脚,那么6里面有多少个2就有多少只鸡。
列式解答:鸡的只数:(8×4-26)÷(4-2)=3(只) 兔的只数:8-3=5(只)【品析:本环节让学生充分经历了观察、比较、想象、推理、归纳、概括等数学活动与数学思考,探究用多种方法解决鸡兔同笼问题,充分的探究活动既培养了学生的合理推理能力,又有效促进了学生思维能力的发展。】三、反馈质疑,学有所得
质疑:刚才我们在解决“鸡兔同笼”的问题时,用到了哪些方法?比较这些方法,你喜欢用哪种方法?为什么?你认为哪种方法一般都能适用?
四年级的数学人教版下册教案12篇 4年级数学下册教案人教版相关文章:
★ 九年级数学教学工作总结3篇 九年级数学老师第一学期工作总结
★ 四年级上册数学教学设计12篇(四年级数学上册课堂教学设计方案)
★ 小学三年级音乐教案:《摇啊摇》3篇(三年级音乐上册歌曲《摇啊摇》)
★ 三年级科下册教学计划9篇(小学三年级下册科学教学计划教科版)
★ 小学一年级语文下册教学计划12篇(一年级下册语文教学计划)
★ 八年级人教版语文《芦花荡》教案5篇(《芦花荡》教学设计)
★ 小学三年级数学教师家长会发言稿3篇(三年级数学教师家长会简短发言)
★ 六年级数学下册教学计划11篇 六年级信息技术下册教学计划