简易方程教学反思【合集13篇】

时间:2023-11-04 08:44:28 教学反思

简易方程教学反思 篇1

  “简易方程的整理与复习”是人教版数学五年级上学期教学内容,本课的教学目标是通过练习使学生进一步加强对方程意义的理解,知道方程的解与解方程的区分,等式与方程的区分。并能根据四则运算之间的关系解方程。能灵活根据数量间的关系选择方程或算式进行解答。教学重点是理解方程的意义,并能正确解方程。教学难点是能灵活根据数量间的关系选择方程或算式进行解答。在教学本课时,我主要是通过练习,对简易方程的有关概念进行梳理,使得学生进一步加强理解和应用,达到复习课的教学要求。在练习时,我以“闯关”的形式进行,教学设计新颖,倍受学生喜欢。结束后,学生的掌握情况很好,兴趣也很高。但如果这节课能设计一些更有坡度的练习,这样就能在课堂上发现学生的“错”,在课堂上“纠错”。那么这节课会更丰满,学生学习到的知识会更全面,效果就更好了。要达得这一程度,我还要继续加强自身学习,多钻研多思考,使自己的课堂能成为吸引学生的“游乐场”。

简易方程教学反思 篇2

  《简易方程》是五年级上册第五单元的知识,是学生在小学阶段第一次系统接触代数知识。这一单元学生掌握的好坏将直接影响到他们初中代数知识的学习。因此,我将其放在十分重要的地位。

  《简易方程》是五年级上册第五单元的知识,也是这册内容的重点和难点。本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的`基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。很多时候,遇到稍复杂的题,列算式解决时,解题思路常常迂回曲折,很难理解,而列方程解决实际问题,解题思路往往直截了当,降低了思维难度,它让学生从一个简单的思路——找相等关系来解题。所以说,这个单元的知识如何教好,是至关重要的。

  第一块,用字母表示数是学生学习代数初步知识的起步。在教学这一部分知识时,要注重学生对数量关系的理解,也就是说要加强学生用含字母的式子表示数量的训练。所以,在这里一定要向学生强调并反复练习用含有字母的式子表示数量,让学生明白以往学习的所有数量关系在用含有字母的式子表示数量中都能用到。体会到含有字母的式子的数量关系和以前是一样的,只是现在用符号来代替数字了。

  第二块,解方程和列方程解决问题。要根据等式的性质来解方程,普通方程学生解起来问题不大,比多比少的方程,学生错误率还是满多的,我要求学生圈出多、少关键字,谁和谁比划出来,写上谁大谁小。“稍复杂方程”把“写关系式”作为教学的重点,耐心地引导学生理解题目的意思,根据题意写关系式,但好几个同学接受起来仍有困难,就算写出了关系式,仍不会列方程,或是写的关系式与列的方程根本是两码事。如何用稍复杂的方程来解决实际问题仍是本单元教学的薄弱点。

  学习是个循序渐进的过程,尤其是解方程,所以教学要慢慢来,不用急,有些孩子慢慢来就会了。

简易方程教学反思 篇3

《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依据运算之间的关系:一个加数等于和减另一个加数。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

  改革的原因(摘自教学参考书):

  新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

  从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

  那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

  1.无法解如a-x=b和ax=b此类的方程

  新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的`四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

  我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。

  如3千克梨比5千克桃子贵元。梨每千克元,桃子每千克多少元?

  合理的做法应是设桃子每千克X元,从顺向思考,列出方程为3-5X=。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+=3之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。

  很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5X+=3 Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?

  我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

  2.解方程的书写过程太繁琐

  教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

  因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了

  从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

简易方程教学反思 篇4

  每一个数学概念都不是孤立存在的,都存在于一个相应的系统中。把某一概念置于它所存在的相应系统中进行比较,引出新概念,不但能达到对概念的深刻理解,还能深化和发展概念。本课教学时,我将一元二次方程与一元一次方程进行类比,引出一元二次方程的概念。在类比的过程中既加深了对一元二次方程概念的`理解又分析了这两种方程的联系和区别。

  在概念的理解上,教学时我从学生实际出发,选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。

  总之,概念课的引入是概念课教学的前提,概念的理解是概念课教学的核心。重视概念教学,运用多种方式、方法调动学生感官、思维的积极性,学好用好概念是学好一切知识的基础和关键。

简易方程教学反思 篇5

  在通读教参时我初步感受到:简易方程太容易了,学生一学肯定能掌握好。本单元引入等式性质进行教学解方程的方法,简单的一句话,只要记住同加、同减、同乘、同除就行了,这有什么难的。

  正如我所想的,聪明的学生一学就会,并且掌握的很好,但学生是参差不齐的,一小部分学生通过月考可以看出来,他们掌握的`还是不好。怎么了?讲了一遍又一遍怎么还没掌握住?不行,我还的从类型与多加练习下手,就不相信他们学不会。接下来我就把方程总结成六种类型,每组每天出一道题,课前三分钟做完。刚开始肯定是做不完的,就利用上课的一点时间让学生做完。一天一天过去了,通过批改发现孩子们进步了、掌握了。我反省到:

  看来数学不能只站在某一个点上做“井底之蛙”的狭隘的教学,教师不仅仅从本单元、本年级、本学段和小学范畴内分析把握教学内容,更应该从学生发展和为学生发展服务的意识上把握教学内容。

  在课堂上学生多次通过观察就发现未知数的值是多少,但却还要把烦琐的过程写出来。

  例如:

  X+=8,根据等式的性质,学生很容易发现两边同减,得出X=。写出过程是:

  X+=8,

  解:X+-=8-

  X=

  在写过程时学生习惯根据加、减、乘、除运算之间的关系来写,面对如上的繁杂过程接受的缓慢,无奈。

  本单元的教学使我对新教材和新课标又加深了认识,也许当完整的教学完本单元的知识时又会有新的理解和收获。

简易方程教学反思 篇6

  本节课例题的教学注意利用三个等量关系列出三个不同的方程,让学生自主讨论、列出,并利用学过的解方程知识尝试解方程。注意让学生比较选择,让学生明了顺着题意列方程更简洁。注意让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。

  在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于“解”,而在于“学解”。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。

  本节课的教学设计,注重让学生分析条件、问题,让学生首先理解题意,然后让学生通过分析、交流、讨论等活动,找出等量关系,充分展示他们的思维过程,发展思维能力。 应用题的教学难点就是:如何引导学生理解题意,列出需要的数量关系式或等量关系式。在这个过程中,重要的并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式。

  本节课教学设计注意总结回顾方法,让学生总结用方程解决问题的步骤,引导总结出五大步骤后,进一步引导出每一个步骤取一个字,进而总结为“设、找、列、解、验”,比数学课本上总结的步骤更加简洁容易记忆。

  在小组合作方面,本节课主要在分析等量关系,根据等量关系列方程两个环节给孩子们小组合作探讨交流的时间。纵观本节课小组合作有利于学生理解掌握题中的数量关系,找出等量关系,根据等量关系列方程。我们学校本学期开展的是基于导学案学习基础上的小组合作学习,导学案有三分之二的学生能基本完成,三分之一的学生基本不做、做的很少、干脆不做。导学案的学习非常有利于学生的学习,能加快上课的节奏,加大练习量,但对于不预习、不做导学案的学生上课效果大打折扣。基于导学案学习出现的现象是“优者更优”,“弱者被动挨打”“积弱者更弱”。关键是怎样调动学生积极性,怎样让家长配合老师,让学生做好提前预习,让学生提前预习好导学案。这样才能目的效果兼收。

简易方程教学反思 篇7

  现行第九册数学是新课程标准教材实施改革新内容,其中的利弊在于:

  1、教改方向有点聚向七年级的教学方法,意图是与七年级的教学接轨,这种设计本来是一件好事,让小学生尽快接受初中一年级(七年级)教学方法,并为七年级打下良好的学习基础。

  2、课程改革改在五年级第一学期就有点不够恰当了,因为五年级第一学期既没有学约分,更没有学六年级的倒数,这样使教师教起来非常困难,学生对这个知识的掌握也十分艰难。如:解方程:20÷2X=10如果用旧知识来解答是非常容易的,是根据“除数=被除数÷商”,就可以求出2X。再根据“一个因数=积÷另一个因数”就可以求出X了。

  而新教材的教法是方程两边同时×2X,先把方程左边的2X消去,而20÷2X×2X从小学的算理上讲,应该是从左往右算,(在三至五年级学混合运算都是这样要求学生计算的)这样就会使学生在心理上出现矛盾,很难接受这种算法;即使学生接受了这种算法,方程的右边出现了10×2X,这时又要在方程的两边同时除以10,便得到2=2X,再把2X和2调换位置,成为2X=2,然后再方程两边同时除以2,才求出X=1,这种算法既费时,对成绩中等以下的学生又难理解,就会导致相当部分学生对这部分知识落下,并对今后的学习会都产生厌学情绪,不利于小学生对知识的掌握,更激发不起学生学习的积极性。

  3、在稍复杂的方程的内容安排上也欠妥。在这一内容上,学习解稍复杂的方程的方法和列方程解应用题同时进行,在同一节课要解决两个对于小学生来说都是难点的学习内容,至于教师是没问题的,但对学生来说难度就大了,首先,前面所说的解方程是比较简单的方程,相当部分学生学得一塌糊涂,再进行学习稍复杂的方程更难掌握。

  其次,正是有稍复杂的方程解答方法不能完全掌握,在学生的心理上就有解不开的结,所以对怎样运用好的方法去进行列出解应用题的方程,那就更难掌握,因此,有部分学生把这一知识采用的学习方法的放弃,这就不利于学生的学习,更不能达到为七年级打好基础的目的。

  以上三点是本人在教简易方程中感受最深的浅见,不知各位同行是否有这种感受,请各位同行多提这新教材好教学方法,本人乐意接受。谢谢!

简易方程教学反思 篇8

《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

  老方法:

  x + 4 = 20

  x = 20-4

  依据运算之间的关系:一个加数等于和减另一个加数。

  新方法:

  x + 4 = 20

  x + 4-4=20-4

  依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

  改革的原因(摘自教学参考书):

  新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

  从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

  那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

  1.无法解如a-x=b和ax=b此类的方程

  新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

  我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。

  如3千克梨比5千克桃子贵元。梨每千克元,桃子每千克多少元?

  合理的做法应是设桃子每千克X元,从顺向思考,列出方程为3-5X=。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+=3之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。

  很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5X+=3 Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?

  我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

  2.解方程的书写过程太繁琐

  教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

  因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了

  从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

简易方程教学反思 篇9

  人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?

  在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?

  去年的身高+长高的8cm=今年的身高

  今年的身高-去年的身高=长高的8cm

  今年的身高-长高的8cm=去年的身高

  你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。

  X+8=152 152-x=8 152-8=x

  追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程X+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的`。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。

  接着用同样的教学方法探究bx=a的解决问题。

  我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?

简易方程教学反思 篇10

  长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。

  猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。

  任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。

  学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。

  练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。

简易方程教学反思 篇11

  本课为人教版第四单元教学内容,本教材解方程方法利用了天平平衡的原理,采用了等式的性质来教学解方程。形如x±a=b一类的方程利用等式的基本性质一学生很容易解决,形如ax=b与x÷a=b一类的方程,利用等式的基本性质二学生也很容易解决。但行如a-x=b和a÷x=b此类的方程,学生就无从下手了,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦。解决问题时当需要列出形如a-x=b或a÷x=b的方程时,我就要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我觉得回避这两类问题不是很好的方法,否则,我们的教学就会显得片面和狭隘。如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷x=8,但是利用等式的基本性质学生就不会解,但你也不能说这个方程列错了呀。

  因此我当有学生列了a-x=b或a÷x=b的方程时,我借机教了利用算术思路解方程(被减数=差+减数,被除数=商除数)介绍老板教材的解方程的方法。基础好的孩子就容易接受新的方法,而基础差的孩子就还是无法解答此类问题。

  另外教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。

  看来教材利用等式的基本性质来解简易方程也是存在着一些问题,不知各位老师有什么好的方法来解决这些问题呢?请不吝赐教!

简易方程教学反思 篇12

  在通读教参时我初步感受到:简易方程太容易了,学生一学肯定能掌握好。本单元引入等式性质进行教学解方程的方法,简单的一句话,只要记住同加、同减、同乘、同除就行了,这有什么难的。

  正如我所想的,聪明的学生一学就会,并且掌握的很好,但学生是参差不齐的,一小部分学生通过月考可以看出来,他们掌握的还是不好。怎么了?讲了一遍又一遍怎么还没掌握住?不行,我还的从类型与多加练习下手,就不相信他们学不会。接下来我就把方程总结成六种类型,每组每天出一道题,课前三分钟做完。刚开始肯定是做不完的,就利用上课的一点时间让学生做完。一天一天过去了,通过批改发现孩子们进步了、掌握了。我反省到:

  看来数学不能只站在某一个点上做“井底之蛙”的狭隘的教学,教师不仅仅从本单元、本年级、本学段和小学范畴内分析把握教学内容,更应该从学生发展和为学生发展服务的意识上把握教学内容。

  在课堂上学生多次通过观察就发现未知数的值是多少,但却还要把烦琐的过程写出来。

  例如:

  X+=8,根据等式的性质,学生很容易发现两边同减,得出X=。写出过程是:

  X+=8,解:X+-=8-

  X=

  在写过程时学生习惯根据加、减、乘、除运算之间的关系来写,面对如上的繁杂过程接受的缓慢,无奈。

  本单元的教学使我对新教材和新课标又加深了认识,也许当完整的教学完本单元的知识时又会有新的理解和收获。

简易方程教学反思 篇13

  本课的教学重点是感悟用字母表示数的意义,能用含有字母的式子表示简单的数量关系。我由视频导入,通过扑克牌,让学生自主发现,字母可以表示数,并在一定的情境中表示一个确定的数。提出:新学习的内容里面的字母还表示一个确定的数吗?让学生带着这样一个疑问进入新课。

  在教学的整个过程中,我以学生感兴趣的哆啦A梦和时光机贯穿始终。儿歌这一环节让学生再次感受用字母表示数的优越性。介绍数学家韦达,让学生感受悠久的数学文化。最后欣赏生活中的字母图片,让学生感受数学来源于生活,并服务于生活。

  整个课堂趣味性十足,环节显得不那么枯燥。但也有不足之处:

  (1)在让学生用一个式子表示出爸爸的年龄时,我提的.问题不具有引导性。所以,我在巡视的时候,能列出式子的同学很少。

  (2)在练习这一环节,我只关注了学生做题的结果,忽略了学生做题的过程。应该让他们自己说一说做题的思路,过程。

  (3)在小结的时候,我提的问题有点抽象,不够直白,学生不太明白什么意思,所以很少有学生能答上来。

简易方程教学反思【合集13篇】相关文章:

中学生语文教学反思(合集10篇)

教学反思幼儿园【11篇】

一年级数学下册《统计和可能性》的教学反思13篇

蜘蛛开店教学反思4篇

一年级《10的认识》数学教学反思12篇(10的认识教案教学反思)

《蓝色的树叶》教学反思11篇 蓝色的树叶教案反思

《圆锥的体积》教学反思12篇 圆锥体积的课后反思

浅谈数学教学反思10篇 数学教学的反思与感悟

《倍数和因数》教学反思9篇(因数和倍数的教学反思)

初三上册数学教学反思4篇(人教版初三数学上册教学反思)