下面是范文网小编收集的等腰三角形教学反思12篇 等腰三角形性质课后反思,以供参考。
等腰三角形教学反思1
今天和学生们继续学习了三角形的知识——《等腰三角形和等边三角形》,因为昨天刚听了华应龙老师的研讨会,今天有点心血来潮,也来摸摸我们学生的底,他们的自学能力到底有多高?
课前我把全班三十五人分为七个组,每个组指派正副组长两名。上课伊始,我让学生先自学课本,我不给任何指导意见,这样做基于不干扰学生探究知识的思路。
十分钟后,小组自学活动结束,每组汇报探究的成果,孩子们零零碎碎地把本节课所要学的知识一个个抖落出来。课前我也将这些知识点作了一个预设,罗列了如下:等腰三角形、腰、底、底角、顶角、等边三角形……接着我引导学生对这些概念结合图形进行深入理解,最终学完了本节课,学生饶有兴趣地学习了一节课。
课后我反思了这节课,颇有收获:
一、每个学生都有自学能力
我以为学生没办法自学,很茫然,其实不然,他们在自学课本时,有自己的认识、收获和想法,尽管有点不够准确或不完善的想法,但相比较往日习惯等待灌输的做法的确有些触动。学生能够揭示本课的知识点,可能基于他们语文学习的课前预习,尽管能力不强,但值得肯定的。
二、每个学生都能发表自己的想法
往日的课堂,我抛出的问题无人问津的情况经常有,而今天围绕学生挖掘的知识点展开提问或让学生相互提问,学生很乐意说自己的想法,没有拘束,真切地感受到学生的课堂学生做主。当然这节课中我也意识到一个好的和一个不好的个人素养,当一个孩子发言胆怯时,同伴的掌声鼓励了他们的.勇气,说得不好的地方,请本组同伴帮忙,让学生切实感受小组合作的力量;当一个孩子发言错误时,总会引来其他孩子一些不怀好意的笑声,我及时制止并教育学生要懂得尊重别人、倾听别人的意见,谁没有犯错的时候,讽刺的笑声应该从课堂中消失。
三、每个学生都想发表自己的想法
学生在学习的过程中卡壳时,启发后还有困难,只能由老师揭示答案。一些学生情不自禁地说:“我也是这样想的。”我笑着说:“机不可失,时不再来,给你机会时为什么不讲?下次要大胆发表你的意见,哪怕就是错的,至少你思考了。”孩子们调皮地说:“我怕说错。”他们道出了自己的想法,也是我在以往教学中做得不够的地方。孩子们需要鼓励和赏识,才乐意说出自己的想法。
等腰三角形教学反思2
本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现也是特殊的三角形一种。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。通过本节课的教学要求学生掌握等腰三角形的性质定理1、2、3,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力。而等腰三角形的性质定理是本课的重点,等腰三角形“三线合一”性质的运用是本课的难点
首先,我用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的.出发点,激发学生的学习兴趣。在本章的开始已经学习了三角形的分类,并且认识了等腰三角形,为了更好地学好本节课,让学生画一个等腰三角形,指出其各部分的名称,然后让学生猜测等腰三角形除了两腰相等以外它还具有哪些性质?猜想形成不成熟的结论∠B=∠C,那么,我们如何来证明呢?
为学生提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就像数学家那样发现问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度,通过引导,学生容易想到可添加辅助线构造全等三角形来加以证明。通过这样一个过程既培养了学生动口、动手、动脑的能力,也使本节课的难点得以突破,最后师生共同完成证明过程,定理得证。从而由感性认识上升到了理性认识。性质得出后再引导学生观察。既然△ABC≌△ACD,那么∠BAD、∠CAD,BD与CD、AD与BC有什么关系呢?让学生自己去发现、去联想,能充分地发挥学生主观能动性。通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。
等腰三角形教学反思3
本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:
1、起点的教学设计:
有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题:
但如果陷入茫茫的题海中,“解题千万道,解后抛九霄”,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。
3、复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成功感”。
如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的.解决方法探索来涵盖我要复习的知识点。
4、这堂课涉及的几何基础知识非常广泛:
它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。
在本节复习课教学中我注意到避开以下问题:
(1)以教师思维代替学生思维,忽视学生学习的能动性;
(2)重习题的机械操练,轻认知策略的教学;
(3)复习方法呆板,缺少生动性和趣味性;
(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。
5、不足之处:
1)教师要让学生学会选择,在一题多解情况下,引导学生从方便考虑、合理选择。例如(知识深化)已知:△ABC中AB=AC,D为AC边上的一点,E是BA延长线上的一点,AE=AD。求证:ED⊥BC,评讲分析完后,应让学生进行择优选择。当学生反映解第二个方程很繁时,可适当点拨学生先用最佳方法求证。
2)要鼓励学生质疑,如△BEF是等腰三角形的构建和△ABC是不是等腰三角形有关吗?
3)题目可进一步发散,如将变式一继续变式,看能否有其他的发现。从而可进一步复习等腰三角形三线合一性质、等边三角形等知识。
新课程实际上对教师提出了教育专业工作者的要求,这就是教师要成为学生成长的引领者,学生潜能的唤醒者,教育内容的研究者,教育艺术的探索者,学生知识建构的促进者……。照此要求,我们任重道远,确需努力。
等腰三角形教学反思4
这一节课的教学重点是等腰三角形的判定定理及其应用,难点根据题目所给条件进行适当的说理,教学方法主要是讨论、探索、启发式,运用辅助工具是多媒体课件。
开始上课时先让学生观察生活中一组都含有等腰三角形的图片,让学生体会数学来源于生活,生活中存在数学美,接着引导学生说出这组图片的特点,从而引出本节课要探究的主要内容即本节课的课题《等腰三角形的判定》。
在教学过程中,先让学生动手做以下的实验:
在白纸上画一条线段BC,以BC为一边分别以B、C为顶点,画两个相等的角(用量角器),这两角的另一边交于点A,让学生比较AC与AB的长度?设疑问:通过以上实践你得出什么结论?让学生思考、猜想、总结归纳出结论,让学生体验知识产生的过程,激发学生探求知识的'欲望,接着为让学生证明实验的结论,用多媒体来演示三角形的翻折过程,并引导学生总结实验的结论。进一步提问学生:本结论的前提条件是什么?已知什么?结论是什么?如何用数学语言把这个结论的意思表达出来?让学生思考两分钟后,挑选一个学生回答,在学生回答过程中引导并在黑板上板书出来,目的是让学生很好地理解这个结论的意思。然后引出:我们通过实践得出这个结论作用是用它来识别等腰三角形,也就是我们这节课的重点内容:等腰三角形的判定,与前面提到的课题前后呼应,接着引入如何利用判定定理解答一些问题,在讲例题与练习的过程中,题目由浅到深,题型由口答到动手写,在这过程,让学生能够充分的掌握与运用,老师只是从旁引导,并给予一定的帮助与纠正。
总之,本节课较好地完成了教学目标,让学生体会数学来源于生活,生活中存在数学美,让学生能很好地理解等腰三角形的判定定理的含义及利用其来简单说理。但静下心来,认真思考,发现这节课我还有许多不足之处:
1、如果在板书用数学语言表达实验结论:在一个△ABC中,如果∠B=∠C,那么AB=AC的之前在黑板上画出一个三角形引导学生指出∠B所对的边是哪一条边,∠C所对的边是哪一条边后,再把用数学语言表达结论板书出来的效果比直接板书的效果好。
2、在教学过程中,忽略等腰三角形的性质定理与判定定理的区别。
3、在教学过程中有时语速过快,语言不是很简练。
等腰三角形教学反思5
本节课主要是让学生理解等腰三角形的判定方法及应用 ,并使学生通过对等腰三角形的判定方法的探索,体会探索学习的乐趣。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先简单复习等腰三角形的性质1“等边对等角”,这为后面讲等腰三角形的判定“等角对等边”留下铺垫。这样做也培养了学生数学思维的严密性。
2、在学习等腰三角形的判定的时候,教师一定要创设一种切合实际的背景出来,从而使学生明白数学与实际生活紧密相连,学好数学,才能解决生活中的难题。这样的'课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形判定的掌握更深刻得多。另外,在得出等腰三角形的判定以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,先让学生讨论,再让学生上来板书,或者教师和学生先一起来分析解题思路,再让学生做,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习数学的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1.在授课过程中,教师要给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是判定的推导,还是判定的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
2.充分利用教材,在练习题与例题的编排上打破常规,让学生通过与生活紧密联系的背景,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的判定方法,再让学生用等腰三角形的判定方法来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
等腰三角形教学反思6
1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。
2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。
3、教学中应自然地渗透数学思想方法,如:分类讨论等,学生初步形成有分类讨论的`意识,巩固运用———熟识基本图形“角平分线——平行线——等腰三角形”使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的
4、通过对问题的分析及实际问题的解决,注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的动机。获得研究的乐趣,久而久之甚至发展为志趣。
5、存在的问题:
(1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。
(2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得平淡无奇。
(3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。
等腰三角形教学反思7
本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
一、教学建议
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道:哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的'时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
二、教学反思
1.充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2.在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
等腰三角形教学反思8
本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:
1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的'能力,这才是高层次的复习课。
3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。
4、这堂课涉及的几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。
在本节复习课教学中我注意到避开以下问题:
(1)以教师思维代替学生思维,忽视学生学习的能动性;
(2)重习题的机械**练,轻认知策略的教学;
(3)复习方法呆板,缺少生动性和趣味性;
(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。
等腰三角形教学反思9
今天,我说课的题目是上海版数学七年级下册第十四章探究活动二《分割等腰三角形》。
下面,我就从如下四方面说一下我对这节课的整体设计。
一、学情分析
①、教材的地位、作用:
本节课是上教版数学七年级下册第十四章探究活动二《分割等腰三角形》
本探究活动是继等腰三角形性质、判定之后探索能分割成两个等腰三角形的等腰三角形的条件的内容。学习等腰三角形,离不开线段的相等和角相等,通过这节课将加深同学们对等腰三角形地认识,是等腰三角形内容的延续和拓展。同时,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳的能力。
②、学生起点分析
七年级下学期的学生,从年龄特点看:他们好奇心强,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等。
③、设计意图:
让学生初步认识图形分割的意义和方法,让学生在分割等腰三角形的活动中,体会知识的运用和数学思考方法,培养学生的探索精神和探究能力。重在过程的体验。
二、学习目标及重难点
[学习目标]
1、经历可以分割成两个等腰三角形的等腰三角形的条件的探索过程,
培养探索精神和合情推理能力;
2、在活动中,体会知识的运用和数学思考的方法;
3、通过探索条件的实践过程,体会数学推理的乐趣。
[学习重点]:可以分割成两个等腰三角形的等腰三角形的条件的探索过程。
[学习难点]:作出将一个等腰三角分割成两个等腰三角形的图形
学习设计是通过设计学习任务来分解学习过程,通过学习任务从不同的角度为学习目标的实现创造可能,学生带着明确的学习任务进入学习过程,通过分散在不同任务里的目标的逐一实现来完成建构知识与经验的过程。
因此我设计的学生的'学习内容为包含有四个学习任务
[学习内容]:(四个学习任务)
1、将一个任意三角形分割成两个三角形,
2、将给定的三角形分割成两个等腰三角形
3、将给定的等腰三角形分割成两个等腰三角形
4、探索能分割成两个等腰三角形的等腰三角形的每个内角的大小
(总的来说学生在课堂上有三个学习任务:一是学会提出问题二是通过学习,获得更多的信息来回答问题三是经过思考得出自己的结论因此以上每一个学习任务,学生都将面临着提出问题回答问题归纳结论这三个环节
此外为了使学习任务的设计更有效,我在课前对于不同程度的学生作了抽样调查来了解学生的情况,从而在学习任务中关注到学生的差异性)
三、教学流程设计
1直接抛出问题《分割等腰三角形》引起学生困惑。
任务一已知任意△ABC,现要用一条直线把它分割成两个三角形,怎么分割?
任务二已知△ABC,,现要用一条直线把它分割成两个等腰三角形,能不能分割?如果能的话,怎么分割??
任务三(1)已知△ABC的三个内角分别为36°、72°、72°,你可以用一条直线把它
分割成两个等腰三角形吗?
任务三(2)已知△ABC的三个内角分别为36°、36°、108°,你可以用一条直线把它分割
成两个等腰三角形吗?
任务四质疑:任何三角形都能被分割成两个等腰三角形吗?
(学生举出反例,此处有学生提出等边三角形不可以理由是没有最小的角非常干脆直接)
(也有学生谈了他对于顶角小于底角的等腰三角形被分割成两个等腰三角形后各个角的情况虽然说错了但是看得出这位同学的课堂活动的参与度很高同时这位学生谈到的问题正好是接下来需要学生解决的问题)
提出问题:那么还有别的等腰三角形能被分割成两个等腰三角形吗?
请学生动手画顶角分别是锐角、直角、钝角的等腰三角形
设底角为X度,小组合作作图,并求出顶角的度数(X的代数式表示):学生根据内角和180度,求出角度
四、梳理概括,形成结构
知识:分割成两个等腰三角形的条件和方法;
(分割线经过三角形顶点分割线不经过最小角的顶点先分出一个等腰三角形再判断另一个三角形是否等腰三角形分类讨论分出的角是等腰三角形的顶角或底角)
体验:探究活动中的感悟
五、布置作业拓展延伸
分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。
选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。
等腰三角形教学反思10
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的`教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
等腰三角形教学反思11
本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。
“等腰三角形”是学生小学学过的、生活中常见的一类平面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的'训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的平分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证平分线;作高线,证中线,证平分线或作角平分线,证高线,证中线。
性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。
等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。
等腰三角形教学反思12
在新的课程标准中十分强调过程一词,既要重视学生的参与过程,又要重视知识的在先过程。有了学生的参与,课堂教学才显得生机勃勃,学生才会变成课堂学习的主人。知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。
在教学中我们常常回遇到这样一种现象,学生年龄在增长,他们的学习困难也在增多,学生一年一年在升级,而求知的兴趣却在逐渐减弱,不少数学学得不错的学生在长大以后却远离数学,甚至讨厌数学,原因是什么呢?
从学生的方面来讲,这主要是部分学生在他们的整个学习过程中对一些概念,结论,判断不是在研究事实的过程后形成的,而是听教师讲解后知道的。因此,学生在学习中缺少主动的参与,更缺少积极的思考,确实依靠自己的实践去获取知识的过程。从教师的方面将,可能已经将教材将明白,难点,重点归纳清楚,课堂上尽量减少学习的困难,让学生走一条平坦的路,但这样学生就的不到积极的思考。所以教师要全面的积极准备教学过程,让学生参与到教学果实中来,主动思考教师为他们准备的问题,让学生体会发现的乐趣,依靠自己的分析,独立思考获取知识,这中知识才是最宝贵的。例如在等腰三角形三线合一的教学中,两个班级出现了截然相反的效果。其中我是这样设计的:
1画出等腰三角形底边上的高;
2观察图中的全等三角形;
3证明得出的全等三角形;
4证出垂足就是底边上的中点、角平分线上的'焦点;
5归纳结论
通过此过程学生也了解了等腰三角形的三线合一。但是学生的迁移、运用能力不是很强;于是在三年六班上课时,考虑到学生的参与热情、理解能力,改变了教学方法,注重强调过程,于是设计:
(1)出示不等式三角形(可用几何画板)。
(2)画出同一边上高线、中线、角平分线、观察三线位置。
(3)慢慢拖动三角形一顶角将不等边三角形转化为等腰三角形,同时观察三线位置的变化过程,让学生自己去发现,展示汇报,可相互质疑。为此学生的积极性一下子被调动起来了,在相互交流中掌握了知识。
教师如何去做“过程”?这是新课程改革时期我们每位教师必须思考的首要问题,在课堂教师应设计一定情景下的数学问题,设计一些结论开放适合学生实际的问题,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,变教师“主讲”为“主学”,真正让探究过程成为课堂教学的主旋律。
等腰三角形教学反思12篇 等腰三角形性质课后反思相关文章:
★ 《大自然的启示》教学反思3篇(大自然的启示教学设计及反思)
★ 晓出净慈寺送林子方教学反思10篇(古诗二首晓出净慈寺送林子方和绝句的教学反思)