下面是范文网小编分享的分式说课稿12篇(从分数到分式说课稿),供大家品鉴。
分式说课稿1
《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。
教师作为数学教学主导,在设计数学活动时要遵循以下原则:
一、根据学生的年龄特征和认知特点组织教学。
二、重视培养学生的应用意识和实践能力。
1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。
2、培养学生应用数学的意识和提高解决问题的能力。
三、重视引导学生自主探索,培养学生的创新精神。
1、引导学生动手实践、自主探索和合作交流。
2、鼓励学生解决问题策略的多样化。
四、教师对教学目标,难点,重点把握要恰当、具体。
数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。
一、设计思想:初中数学说课稿
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意
识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板
三、教学目标:初中数学说课稿
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法初中数学说课稿
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。
活动3:讲练结合,分析增根
活动5:布置作业,深化巩固(略)
分式说课稿2
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备
多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式 中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
六、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
分式说课稿3
对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理.
2.教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究. 在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术, 激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3.学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到 “学会”和 “会学”的目的。
二、教学过程(多媒体教学)
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则, 所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题 ”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节 “类比联想 形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用 巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析 与 的本质区别和 不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有 (1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,
我在第四环节“循序渐进 再探新知”
创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式 里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、 (2)、 (3)、 接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当 取什么值时,分式无意义?
几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
(五)、变式延伸,进行重构
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当 取什么值时,分式的值为零?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构
为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,
所以在接下来的第(六)环节“ 巩固深化 分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:
A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用.
B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母.
C、分式分母的值不能为0,否则分式无意义.
D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0
E、有理数的分类(有理数包括整式和分式)。
(2)、作业布置
(设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
三、教学设计说明
回顾整节课的设计,我主要着力于以下三个方面:
(一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:
1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。
2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。
3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。
4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展
5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。
6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。
(二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:
(1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;
(2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。
(三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。
分式说课稿4
各位评委老师:
大家好!我今天说课的内容为选择北师大版八年级下册第三章第一节《分式》第一课时。我将从以下五个方面对本课加以说明:
一.结合课程标准说教材设计
二.结合教育现状说学情分析
三.结合学生情况说教学目标设计
四.结合教学情境说教法与学法设计
五.结合模式方法策略说教学过程设计
程序如下:
一.结合课程标准说教材设计
1.教材的地位和作用
分式是初中数学中继整式之后学习的又一个代数基础知识,是对小学所学分数的延伸和扩展,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。因此,学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础。
2.教学重难点
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:分式的概念与意义
设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。
教学难点:理解和掌握分式有无意义、分式值为零时的条件
设计意图:由于分式的分母中含有待定字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。
二.结合教育现状说学情分析
由于布局的调整,导致两极分化现象严重,梧桐树学校的学生流动量很大,班里的优等生很少,中等生和成绩差的学生居多,甚至中等生也较少,之前在分数和整式的学习中,学生对分数和整式的理解、掌握不熟练,这给本节分式的学习带来了很大的困难,其实分式是分数的“代数化”,所以其性质与运算是完全类似的,针对这种状况,要以基础知识的学习为主,复习和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。
三.结合学生情况说教学目标设计
随着课改的不断深入,三维目标在教学中的重要性显得更突出,知识、过程、技能、效果的重要性也由此可知。
由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下3个方面为本节课的教学目标:
知识与技能目标:1、了解分式的概念,明确分式和整式的区别;
2、体会分式的意义,进一步发展符号感。
过程与方法目标:1、培养学生会用所学知识解决实际问题的能力和技巧;
2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.
3、培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.
情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满 着探索和创造,体会分式的模型思想。
四.结合教学情境说教法与学法设计1、教学方法
基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,以实现概念教学的类比迁移这一思想方法的渗透。借助于,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。以加强分式与现实生活的联系,发展数学的应用意识,突出分式的模型概念。
2、学法指导
根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和实际接受能力,在本节课的学法指导中,我将采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
五.结合模式方法策略说教学过程设计
本节课以分式概念为起点,学生在创设问题情境的前提下,带着问题去思考归纳,极大程度的调动学生学习的主动性,激发学生学习的热情,激活学生的思维。
结合本节的教学内容及重难点,我将本节课的教学过程设计如下:创设情境引入课题—分析概念落实双基—举例应用分层教学—及时反馈归纳小结
设计的意图:在上述流程中通过问题的探究,使知识的发生发展与学生的思维贴近,这样实现了主体参与,主体发展的同步进行。
1.创设情境,引入课题
(活动1)
创设一个“代数式庄园”的情景,复习整式的概念,并能判断哪些式子是整式,为学习分式做准备.
问题:什么是整式?下列式子中那些是整式?
设计意图: 让学生通过复习整式的概念,明确单项式和多项式统称为整式,这样就较容易找出哪些是整式。因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得分式的概念,所以必须熟练掌握整式的概念.
注意事项:学生能够比较准确的找出哪些是整式,但有些学生会简单的认为“分数”形式的代数式不是整式,其实这不是判别的关键,而是看分母中是不是含有字母,所以有些学生会漏掉 s/300.
(活动2)
以一个“土地沙化”的问题情景引入,让学生思考讨论,用式分式表达题目中的数量关系:
问题情景(1):面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?
如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要 个月,实际完成一期工程用了(x+30)个月。
根据题意,可得方程()
问题(2):正n边形的每个内角为()度。
问题(3):新华书店库存一批图书,其中一种图书的原价是每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?
设计意图:通过以上三个问题列出了几个与整式不同的代数式,形成对比,自然过渡到分式的探索和学习分式的必要性。让学生进一步经历探索实际问题中的数量关系的过程;通过问题情景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感.
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,冷静的思考,激烈的讨论,对于问题(1)大多数学生能找出2个或2个以上等量关系式,根据学生的情况教师可以给予适当的提示和引导,有了这个基础第2问第3问就不难了.
2.分析概念,落实双基
以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义.
讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?
分式的概念:整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.对于任意一个分式的分母都不能为零.
设计意图:让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.再得出分式概念后,老师要特别强调分式的分母必须含有字母,且分母不能为零,引起学生的注意。
注意事项:学生通过观察、类比,及小组激烈的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的 小组考虑了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,还可理解为字母是可以表示任何数的。这样获得的知识,理解的更加透彻,掌握的更加牢固,运用起来会更灵活.
3.举例应用分层教学
学生讨论分式什么时候有意义?什么时候无意义?什么时候分式的值为零?
例题(1)当 a=1,2时,分别求分式 的值;
(2)当 a取何值时,分式 有意义?
(3)当 a取何值时,分式 无意义?
(4)当a取何值时,分式 的值为0?
其中(1)(2)(3)问由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。在此基础上我补充了第(4)问让学生进一步探索出分式为零的条件
设计意图:通过分式有无意义的条件探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发主动学习的内在动机。
讨论、解答结束后,教师再一次总结分式有无意义的条件及分式的值为零的条件并板书加深对知识的理解。
分式有无意义的条件 1、有意义 B≠0.
2、无意义 B=0.
分式值为零的条件 A=0 且 B≠0.
4. 及时反馈归纳小结1、反馈训练,巩固概念
(1)、下列各式中,哪些是整式?哪些是分式?
(1) (2)2a-b (3) (4)2x-
设计意图:考察学生对分式、整式概念的理解.
(2)、x取什么值时,下列分式无意义?
(1) (2)
设计意图:让学生体会分式的意义,知道如果a的取值使的分母的值为零,则分式没有意义,反之有意义.
(3)、把甲、乙两种饮料按质量比x:混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料?
设计意图:体会分式可以表示现实情景中的数量关系,分式是表示现实世界中的一类量的数学模型.
注意事项:学生通过类比分数的分母不能为零,基本能理解分式的分母也不能为零。在学习中,有些学生错误的理解为只是分式的分母中的字母不为零,应该及时纠正,是整个分母不为零。分母可能是单项式,也可能是多项式。
2.小结归纳,分层作业
a.小结:
(1)通过本节课的学习,你学会了哪些知识?
(2)通过本节课的学习,你最大的收获是什么?
(3)通过本节课的学习,你获得了哪些学习数学的方法?
设计意图:让学生畅所欲言,大胆谈自己的收获和感想,充分发挥学生的主体地位,从学习知识、方法、和延伸三方面进行归纳。
b.作业布置:
针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。
必做题是教材67页1、2、3题
选做题是教材68页4题及编一题用分式表示数量关系的实际问题
设计意图:根据学生的个体差异,设计分层作业,使不同层次的学生都能通过作业有所收获。
分式说课稿5
一、说教材:
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
全章共包括三节:
16.1 分式
16.2 分式的运算
16.3 分式方程
其中,16.1 节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。16.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。在这一节中对指数概念的限制从正整数扩大到全体整数,这给运算带来便利。16.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于解以前学习的方程的新问题。根据实际问题列出分式方程,是本章教学中的另一个难点,克服它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
二、说教学目标:
1.进一步掌握分式的有关概念,相关性质及运算法则,分式方程的解法。
2.会利用分式方程解决实际问题,培养分析问题,解决问题的能力和应用意识。
三、说教学重难点
重点:
1、能熟练的进行分式的约分、通分和分式的运算。
2、会解可化为一元一次方程的分式方程,了解产生增根的原因。
3、会用分式方程解决实际问题。
难点:用分式方程解决实际问题。
四、说教法学法
阅读教材,归纳知识点,疑难问题小组合作探究。
五、说教学过程:
学生在自主梳理课本内容的基础上,课堂上展示交流以下问题:
概念部分:
举例说明什么是分式、分式方程、分式的约分、通分和最简分式
分式:
分式方程:
分式的约分:
分式的通分:
最简分式:
性质部分
(1) 什么是分式的基本性质?本章哪些内容用到了分式的基本性质?
(2) 整数指数幂的运算性质有哪些?
3法则部分
用自己的语言叙述分式的加法、减法、乘法、除法及乘方的运算法则(各举一例说明这些法则) 。
这部分内容由每个小组完成。目的是培养学生梳理知识的能力,同时也能更好的掌握本章的基础知识,学生完全可独立完成。这些基础知识也为分式的运算、化简、解方程奠定基础的所以学生必须学会这部分内容。为此让学生举例说明就更有必要了。
巩固训练,提升能力:
1.在式子,,,,·,中
整式有 ; 分式有 。
2.若分式:有意义,则,x ;若分式无意义,则x ;若分式的值为零,则x= 。
3.解分式方程的基本思想是把分式方程转化为 方程,其步骤为:
(1)去分母在方程两边都 ,把分式方程转化为 方程。
(2)解这个 方程。
(3)检验,检验的方法是 。
4.约分= , 5.将5.62×
5 、10用小数表示为( )
A.0.000 000 00562 B.0.000 000 0562
C.0.000 000562 D.0.000 000 000562
6.下列式子从左到右变形一定正确的是( )
A. B. C. D. =
7.下列变形正确的是( )
A.3a= B. C. D.
8.通分(1) , (2)
9.(1)计算 (2) 解方程
10.计算
11.先化简:÷。再任选一个适当的x值代入求值 。 .
12已知:,试求A、B的值。
13.已知:求的值.
14.已知,求的值.
15.若关于x的分式方程有增根,求m的值.
16某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
17.学校要举行跳遗绳比赛,同学们都积极练习,甲同学跳180个所用时间,乙同学可以跳240个,又知甲每分钟比乙少跳5个,求每人每分钟各跳多少个?
18.探究题:探索规律:,个位数字是3;,个位数字是9;个位数字是7;,个位数字是1;,个位数字是3 ;,个位数字是9;的个位数字是 ;的个位数字是 。
19.根据所给方程,联系生活实际编写一道应用题(要求:题目完整,题意清楚,不要求解方程.)
这部分编写的目的是运用基础知识解决实际问题从而达到解决问题的目的,提纲下发全体学生都做,然后针对检查情况把典型题写在黑板上然后由学生讲解,教师适时补充。最后19题是开放试题但教师要总结规律和方法,工程问题怎样编,行程问题怎样编,教给学生方法是关键。
六、教学反思:
自从实行学、教、测教学模式以来学生的能力得到真正的提高。在本章的教学中我主要是采用类比的教学方法,通过类比分数来学习分式效果非常好。本节复习课让学生归纳知识体系真正培养了学生的归纳整理知识的能力。复习课注重习题方法的探究。学生思维能力的培养。类型题的规律的探究。在本节课中体现的还可以如果时间允许的话效果还能好一些。值得我们思考的是在今后的备课中还应注意时间的分配和重点问题的处理。同时数学课上应该多交给学生解题方法、解题技巧、规律探索、思维能力的训练等。
分式说课稿6
下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、教材内容:
我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:
(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
分式说课稿7
各位评委、老师:
大家好!
今天我说课的题目是《分式方程的应用》。我将从“学习内容定位、学习目标认定、重难点确立、学情分析、教学策略、教学过程”五个方面对这一课的教学设计进行说明,具体如下:
一、学习内容定位
本节内容在教材中所处的地位和作用:《分式方程的应用》是新人教版八年级数学下册16.3分式方程中第三课时内容。它是分式方程解法的延展与最终归宿,也是本章学习的重点与难点。从知识的掌握来看,本节课是对前面所学知识的深化和运用;从学生的学习发展来看,它将为研究数学问题提供研究思想与方法,利用分式方程解决社会热点问题,是中考必考内容。在初中数学知识体系中作用重要,意义重大。
二、学习目标认定:
1、知识目标:指导学生亲身经历“实际问题——分式方程——求解——解释解的合理性”的过程,学会从题中寻找等量关系,掌握列分式方程解实际问题的方法。
2、能力目标:引导学生面对生活,关注社会热点、焦点问题,运用所学数学方程思想解决生活中的实际问题。指导学生在互动合作学习中发展能力,强化方程思想应用意识。
三、学习重难点
1、学习重点:审题、寻找等量关系,将实际问题转化成分式方程的数学模型。
2、学习难点:寻求解决问题的不同方法,审题设元、寻找等量关系、列出方程、正确解答。
四、学情分析
在初一时,学生就学习了“列一元一次方程解应用题”,明白遇到实际问题可以列方程解决,但分析问题能力、审题能力、寻找数量关系的能力较弱,依然影响学生学习。上一节通过学习“分式方程”的解法,使学生会解分式方程,理解了增根的含义,会检验分式方程的根,为继续学习列分式方程解应用题奠定了基础。
五、教学策略
1、难点突破
通过学生小组合作学习,从不同角度展示找出的等量关系,在交流中质疑、在质疑中辨析、在辨析中统一认识,掌握寻找等量关系的一般方法。
2、学法分析
让学生根据教材和教师提供的预习学案先进行自我探究,然后在小组内交流探究心得与疑难问题,在质疑辨析、互动交流中归纳总结,纠错矫枉,达成共识,实现学习目标。
3、教法分析
(1)情境互动法:整节课始终围绕“分式方程的应用”这条主线,通过创设学习情境,引导学生从实际问题中抽象出分式方程,体验解题过程,学会寻找等量关系,掌握列分式方程解决实际问题的方法步骤。
(2)点拨指导法:在学生合作学习,展示交流的过程中,教师对学生的错误点、易混点、疑难点以及学习中应注意事项、方法规律、适时点拨,进而达到强调重点、突破难点的目的,将讨论交流推向高潮、引向深入。
六、教学过程
(1)情境导入、通过学生生活中司空见惯的门面房出租信息,引出要学习解决的问题,激发学生学习兴趣,导入新课。
(2)学情调查、收集学生自学中存在的问题,全面掌握学生学习情况,为组织大家深入学习做好准备。
(3)合作探究、通过学生小组合作学习,观察比较,归纳总结,纠错矫枉,感悟寻找等量关系,掌握分析问题,解决问题的方法。
(4)点评指导:学生进行学习成果展示时,教师对如何寻找等量关系进行点评,强调易错易混之处,让学生在互动交流中掌握重点、突破难点。
(5)达标检测、这既是学生对分式方程的理解和应用,也是方程知识的拓展与延伸,应由学生独立完成以达到检测学习效果的目的,帮助教师全面掌握学生学习目标达成情况。
(6)总结反思、引导学生对所学知识进行理解吸收、内化整合,初步掌握列方程解应用题的方法。总结教学过程中的得与失,查缺补漏,促进学生整体提高。
以上是我的教学设计,敬请各位领导、专家、同行,批评指正!
分式说课稿8
一、教材分析:
1、本章与本节的地位与作用: 本章是在学生已掌握了整式的四则运算,多项式的因式分解的基础上,通过对比分数的知识来学习的,包括分式的概念、分式的基本性质、分式的四则运算,这一章的内容对于今后进一步学习函数和方程等知识有着重要的作用。可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的。它既可看着是分式有关知识在解方程中的应用;也可看着是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程)。同时学习了分式方程后也为解决实际问题拓宽了路子,打破了列方程解应用题时代数式必须是整式这一限制。 解分式方程的基本思想是:“把分式方程转化为整式方程”,基本方法是:“去分母”。让学生进一步体会“转化”这一数学思想,对提高学生的数学素质是非常重要的。 2、教学目标:根据学生已有的知识基础及本节在教材中的地位与作用,依据大纲的要求确定本课时的教学目标为:
(1)了解分式方程的概念,会识别分式方程与整式方程。
(2)理解分式方程的解法,会熟练地解分式方程。
(3)体会解分式方程的“转化”思想。
3、教学重点、难点、关键:根据大纲要求及学生的认知水平,确定本节课的教学重点为:分式方程的解法。重中之重是去分母实现分式方程到整式方程的转化与验根。 由于学生去分母时涉及等式的基本性质、整式运算、分式运算等知识,学生容易出错,而一旦顺利地实现了去分母,即实现了分式方程到整式方程的转化,解整式方程是学生早已熟悉的知识。因此确定正确去分母既是教学的难点,也是教学的关键。由于解分式方程可能产生增根,学生第一次遇到,所以分式方程的验根也是难点,
二、教学方法:
(一)学生分析: 根据七年级学生的知识水平和年龄特征,考虑到素质教育的要求,结合本节课的特点,主要采用启导式教学法、讲练法,引导学生去观察、去思考、去探索,尽量让学生自己寻找、归纳出解分式方程的一般步骤。
(二)新课教学:
1、分式方程的定义。
(1)分母里含有未知数的方程叫做分式方程。
(2)提问:前面学习过的一元一次方程的分母里含有未知数吗?前面学习过的方程都是整式方程,一元一次方程是最简单的整式方程。
(3)下列方程中哪些是整式方程?哪些是分式方程? (共6个识别题,1.x+3y=1/12 2、x+1/x=5 ,3、2/3x,4、3/(x-2)-1=5/(2x+1) 5、5/(3x-2)+(x+1)/3=16、(2-7)/5+x/3=1/2
) 注意:区分整式方程与分式方程的关键是什么?分母中是否含有字母)。先学习分式方程的定义,再与已有知识进行对比,进一步强化学生对分式方程概念的本质的认识,紧接着利用几道识别题训练学生正确地区分分式方程与整式方程及分式的区别,这部分教学要求达到“了解”层次即可。)
2、解方程:回忆解方程的一般步骤中的第一步?如何去掉分母?方程的两边都乘以一个什么样的式子?这是解分式方程的关键步骤,只有通过去分母才能实现我们的转化,而这个步骤由于涉及的知识多,学生容易出错。这里应是教学的重点之一。解这个整式方程。(由学生完成)。(学生已有这部分知识,由学生独立完成,新课的教学不能教师一讲到底,凡学生能做的应由学生做,因为学生才是学习的主体。) 把解得的未知数的值代入原方程进行检验。必须强调原方程,因为有学生往往代入去了分母的整式方程中。应引导学生进行检验,得出未知数的值是否使方程两边相等,确定方程的解的正确性,得出原分式方程的解的结论。
(三)课堂练习:
通过练习强化学生对解分式方程的步骤的理解,使学生熟练地解分式方程,通过练习,及时掌握学生对所学知识的掌握情况,根据练习中反馈的信息进行教学的查缺补漏,纠正练习中出现的问题,在练习中形成解题的能力。
拓展题:
小明说:x=2是方程2/(x-2)-1=5/(2x+1)的增根?你是否赞成他的说法?
对这堂课的增根的进一步理解与巩固,说明增根是在解方程后,让公分母为零的未知数的值才叫方程的增根。
(四)课堂小结:
1、分式方程的定义。
2、解分式方程的一般步骤。
3、解分式方程应注意:(1)正确去分母,化分式方程为整式方程。(2)解分式方程必须检验。通过小结使学生学习的知识形成体系、网络。帮助学生全面地理解掌握所学知识。小结也应由学生试着完成,教师补充,有利于培养学生归纳整理知识的能力,也是学生参与学习的体现。
(五)、作业布置:练习册第52页10.5 1、2、3题。
课外作业的布置是必须的,它有利于学生巩固所学的知识,作业应精选,应适量。
1、观察以下两个题目:
(1)计算: 2/(x-1)-1
(2)解方程:2/(x-1)-1=0
这两个题目分别要求我们做什么?解题的第一步有什么不同?
五、几点说明: 1、板书设计:将黑板分成四个部分。 (1)课题、引例1、引例2。 (2)例1。 (3)例2。(学生板书的课堂练习写在例1、例2的下面) (4)小结与作业布置。 2、教学时间安排: 复习引入约3分钟;新课教学约30分钟;课堂练习约5分钟;小结约2分钟;作业布置约1分钟。 3、整堂课要体现的设计思想: 根据学生已有的知识结构和年龄特征,结合教材的特点,选择启导式教学法、讲练法,培养学生的学习兴趣,让每个学生都达到大纲的要求。注重“学生是学习的主体”这一教学思想的体现,教学中通过富有启发性的提问让学生思考、让学生试着总结、让学生试着做一做等方式尽量让学生去参与,去发现,去尝试,去总结。使学生由被动地接受知识变为主动地去获得知识。
在讨论增根问题时,通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根,然后归纳出验根的方法。
分式说课稿9
一、教材分析
1.地位和作用
“分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标 (1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义:分式与除法的关系;
(2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。
二、教学方法与学法
本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.设问激疑,以旧探新,类比联想,形成概念
教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示:
1. 一段绳子长3米,把它平均分成4份,则每份长是多少?
2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶 小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?
学生通过运算、比较,可以发现 、 是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。
接着,教师在此基础上引导学生类比联想,给出分式的概念。即
两个数 , 相除可以用“ ”或“ ”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“ ”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么 叫做分式。如:分母中都含有字母,都是分式。
(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
在教师与学生共同得到分式的概念后,紧接着教师给出:
例1:现有以下各式:2, , , , , , ,请同学们任取两个进行组合,使组合后的代数式为分式。
在这里我们可以发现答案并不唯一,通过对分式的概念的理解,让学生亲自动手,亲身体验,展开想象的翅膀,组合成的代数式将一个个的呈现在我们眼前,激发学生兴趣,调动学生学习的主动性。然后教师通过学生所给出的答案加以分析,指出类似 这种形式的,虽然也有分母,但分母中不含有字母,所以不是分式,而是整式。指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
根据分式的概念,我们还可以看到分数线具有双重意义:(1)表示括号;(2)表示除号。所以为了让学生体会到这一点,教师给出:
例2:用分式表示下列各式:
(1) ; (2) ; (3) ; (4) ;
2.观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
例3:当 取什么值时,分式: 有意义?
学生根据之前的结论,得出只要分母 ,即 时,这个分式有意义。
教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式有意义?
(1) ; (2) ; (3) ; (4)
讲到这里,教师又乘胜追击,问学生:
例4:那么以上各分式,当 取什么值时,分式无意义?
那么我们说只要分母为零时,这个分式就无意义。请学生给出每一题的正确结论。
3、变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。
教师问学生:
例5:同样的,以上各分式,当 取什么值时,分式的值为零?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,所以教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(3)(4)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。
4.反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?
教师整理学生的发言,归纳小结:
(1)整式和分式统称为有理式
(2)分式的概念:两个整式A,B相除时,可以表示为 的形式,如果分母B中含有字母,那么叫做分式。
(3)要分式有意义,也只要使分母不为零
(4)当分母为零时,分式就无意义
(5)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
(6) 是圆周率,它代表的是一个常数。
(7)在开放题中,强调根据整式、分式的定义进行编制。
5. 分层作业
(1)练习册15.1
(2) 取何值时,分式 的值为负数?
四.评价分析
1.学生在学习新的数学概念时,新的信息对学生来讲基本上是陌生的,零碎的和彼此孤立的,在课堂教学中,教师的任务就是为学生的发现、创造提供自由广阔的天地,就是在于引导学生探索获得知识、技能的途径和方法。因此,利用旧知探索新知,逐步深入,引发学生思维冲突,将学生带入发现概念的最近发展区。
2.在教学过程中,很多学生误认为由旧知识获得新知识后,对新知识的理解就已经到位了,这时需要教师引导学生探求新旧知识间的深层联系和实质区别,去揭示这种内在的或隐藏的联系与区别,纠正其对概念的表面性和片面性的理解,在头脑中获得新的痕迹。
3.小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。
分式说课稿10
一、说教材
地位、作用
分式是初中数学中继整式之后学习的又一个代数基础知识,是对小学所学分数的延伸和扩展,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。因此,学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础。[来源:]
重点、难点
本节课是新授课,使学生掌握分式的概念以及分式是否有意义的条件是本节课的教学重点;由于分式的分母中含有待定字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。
教学目标
根据教材和新课标的要求,以及结合学生的实际情况,我认为本节课的教学目标是:
1.知识目标
通过对分式与分数的类比,经历探索由整式扩充到有理式的过程,初步学会运用类比转化的思想方法研究数学问题。
2.能力目标
培养学生的概括能力和实践能力,并体会“观察—探究—归纳”的数学方法,发展迅速思维的灵活性和广阔性。
3.情感目标
关注学生的情感与态度,通过合作交流,探索实践,培养学生的主体意识。
二、说教法
本节课是数学基础知识,学生的可接受 性较强,因此,针对本节课的知识特点,在教学方法上,我将主要使用“启发—探究”教学法,同时,配合“讲解法”和“研究法”。
在教学的过程中,我注重了问题的提出过程,知识的形成过程,能力的发展过程,以及解决问题的方法及其规律的概括过程,尤其是合作交流,创新精神和实践能力的培养过程。
此外,本节课采用多媒体辅助教学,有助于激发学 生的学习兴趣,提高学习效率。针对不同层次的学生,将本着以人为本,因材施教的原则,分类推进,下保底二上不 封顶,并且注重培养学生的屯节合作精神和互帮互助的品德。
三、说学法
根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和实际接受能力,在本节课的学法指导中,我将引导学生合作学习,探究学习,自主学习,同时,配合使用网络学习,以期通过本节课的教学,从以下几方面提高学生的数学素养:
1.通过“观察—探究—归纳”,培养学生收集、提炼和归纳信息的能力,启迪学生的探索灵感。
2.通过启 发学生的探索途径和口述解决问题的过程,培养学生由具体到一般的辩 证思想和语言表达能力。
3.通过课堂讨论,培养学生的合作交流能力。
4.通过探索实践,培养学生的创新精神和实践能力。
四、说教学程序
为了更好的体现我上述的教学理念以及整体化的教学思想,我将本节课的教学程序设置为如下五个环节:
(一)创设问题情境,探究新知
数学源于生活,为了使学生对本节课有更深层次的把握,激发学生的学习兴趣和求知欲,在这一环节中,我打破了在以往教学中直接引入课题的常规,从网上下载了几幅有关沙尘暴的图片,请看大屏幕,同时,我结合本节课即将学习的有关数学知识以及我国目前的环境现状,设计了如下问题。启发学生依据题意,列出相应的代数式,然后我将引导学生观察所列式子的特点,并将其与分数进行比较,由此启发诱导,引入新课。
我这样设计的目的在于,借助于多媒体,从实际生活中的实例引入课题,使学生在实际生活中感受、体会即将学习的相关数学知识,让他们从现实情境和已有的知识经验出发,展开对新知识的探索,同时,由于问题创设具有很强的现实意义,因此,它在激发学生的学习兴趣和求知欲的同时,也有助于增强学生的环保意识。
(二)讲解新课
这一环节是整个教学活动的中心环节,为了充分体现学生在整个教学活动中的主体地位,我将在学生已有知识经验的基础上组织学生进行学习,探究分式的概念、意义以及简单应用,加深他们度知识的理解,为此,我将新课的讲解过程细分为如下四个步骤:
1.分式的定义
为了使学生能够准确区分“分式”与“整式”,加深他们对分式的理解,我打破了在传统教学中直接给出定义的常规,设计了想一想,引导学生在上一环节对所列代数死与分数进行比较的基础上,再将其与整式相比较,找出二者的异同,从而类比整式归纳总结出分式的定义。
2.分式的意义
分式的分母不能为零,即只有当分式的分母不为零时,该分式才有意义。对于这一问题的讲解,我将让学生类比分数以及结合前边的实际问题加以理解。
3. 分式的基本性质
为了使学生更容易理解和接受分式的基本 性质,在讲解分式的基本性质之前,我安排了议一议活动,设计了如下两道题目,引导学生对所示问题进行充分讨论,共同探索分式基本性质,然 后,我将以课堂提问的方式,逐一板书讨论结果,综合学生的回答,归纳总结出分式的 基本性质,即:分式的分子 与分母同乘以(或除以)同一个不等于零的正式,分式的值不变。
4.例题讲解
通过具体的例题,给学生演示本节所学知识的具体应用,讲解完毕后,挑选 学生上台板演,在规范学生讲解步骤的同时,加深他们对本节所学知识的理解和记忆。
至此,我完成了对本节课所有理论知识的教学。
(三)课堂练习
众所周知,理论是用来指导实践的,为了使学生能够将所学的理 论知识很好的应用于实践,实现理论与实践的完美结合,我将教学程序中的第三个环节设计为课堂练习。
在这一环节中, 我为学生精心挑选了课本中的两道习题,并进行了适当的改编,作为随堂练习,要求学生在本节所学知识的基础上,结合具体的题目亲自动手练一练,以便在检验本节课教学效果的同时,针对学生在练习中出现的问题进行及时的查漏补缺。
(四)课堂小结
以课堂提问的方式对本节课进行小结,结合学生的回答,教师最后给出规范总结,以重申本节课所学习的重点及难点。
(五)布置作业
针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。[来源:学#科#网Z#X#X#K]
五、板书设计
为了使本节课达到更好的教学效果,这就是我针对本节课的所有内容进行的板书设计,在板书设计的过程 中,我的指导思想是尽可能使得版面结构合理,简明扼要,使学生一目了然,易于抓住重点、难点和关键。
我的说课到此完毕,谢谢各位老师!
分式说课稿11
一、教材分析
1.地位和作用:“分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。
2.学情分析:我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标
(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
4.教学重点与难点:本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义:分式与除法的关系;(2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。
二、教学方法与学法
本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程:
本节课的教学我主要分下面这样几个环节
1.设问激疑,以旧探新,类比联想,形成概念:教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示:
1.一段绳子长3米,把它平均分成4份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?
学生通过运算、比较,可以发现,相除可以用“叫做分式。如:分母中都含有字母,都是分式。(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)在教师与学生共同得到分式的概念后,紧接着教师给出:
例1:现有以下各式:2,请同学们任取两个进行组合,使组合后的代数式为分式。
在这里我们可以发现答案并不唯一,通过对分式的概念的理解,让学生亲自动手,亲身体验,展开想象的翅膀,组合成的代数式将一个个的呈现在我们眼前,激发学生兴趣,调动学生学习的主动性。然后教师通过学生所给出的答案加以分析,指出类似的形式,如果分母B中含有字母,那么叫做分式。(3)要分式有意义,也只要使分母不为零(4)当分母为零时,分式就无意义(5)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
(6)的值为负数?
四.评价分析:
1.学生在学习新的数学概念时,新的信息对学生来讲基本上是陌生的,零碎的和彼此孤立的,在课堂教学中,教师的任务就是为学生的发现、创造提供自由广阔的天地,就是在于引导学生探索获得知识、技能的途径和方法。因此,利用旧知探索新知,逐步深入,引发学生思维冲突,将学生带入发现概念的最近发展区。
2.在教学过程中,很多学生误认为由旧知识获得新知识后,对新知识的理解就已经到位了,这时需要教师引导学生探求新旧知识间的深层联系和实质区别,去揭示这种内在的或隐藏的联系与区别,纠正其对概念的表面性和片面性的理解,在头脑中获得新的痕迹。
3.小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。
分式说课稿12
一、地位和作用
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的.想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。
2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。
设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?
教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。
问题2:用画函数图象的方法解不等式:
-2x+3<3x-7.
分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,
再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 解法1: 原不等式化为5x-10>0,画出直线y=5x-10如图所示, 可以看出x>2时这条直线上的点在x轴上方, 即这时y=5x-10>0,所以不等式的解集为x>2. 解法2: 将原不等式的两边分别看作是两个一次函数, 画出直线l1∶y=-2x+3,y2=3x-7,如图所示, 可以看出它们的交点的横坐标为2,当x>2时, 对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2. 三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m? (5) 你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 P19 读一读 P20 习题1.6 分式说课稿12篇(从分数到分式说课稿)相关文章: