一元二次不等式解法【汇总8篇】

时间:2023-10-13 20:16:54 综合范文

一元二次不等式解法 篇1

  教学目标:

  (1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

  (2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

  教学重点:一元二次不等式的解法(图象法)

  教学难点:

  (1)一元二次方程、一元二次不等式与二次函数的关系;

  (2)数形结合思想的渗透

  教学方法与教学手段:

  尝试探索教学法、归纳概括。

  教学过程:

  一、复习引入

  1.复习一元一次方程、一元一次不等式与一次函数的关系

  [师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

  学生可能回答是代数方法,也可能说是利用直线图象。

  [师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

  [师]请同学们画出图象,并回答问题。

  一次函数y=2x-7的图象如下:

  填表:

  当x 时,y = 0,即 2x-7 0;

  当x 时,y < 0,即 2x-7 0;

  当x 时,y > 0,即 2x-7 0;

  注:(1)引导学生由图象得出结论(数形结合)

  (2)由学生填空(一边演示y<0,y>0部分图象)

  从上例的特殊情形,你能得出什么结论?

  注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

  2.新课导入

  [师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

  二、讲解新课

  1、一元二次不等式解法的探索

  [师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

  填表:方程x2-4x+3=0(即y=0)的解是

  不等式x2-4x+3>0(即y>0)的解集是

  不等式x2-4x+3<0(即y<0)的解集是

  注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象)

  [师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

  注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

  2、讲解例题

  [师]接下来请同学们再来分析几个具体例子

  (板书)例:解下列各不等式

  (1)2x2-3x-2>0;

  (2) -3x2+6x>2;

  (3)4x2-4x+1>0;

  (4)-x2+2x-3>0.

  注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

  解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

  所以原不等式的.解集是{x| x<- x="">2 }

  四、课后作业:书P21/习题/

  五、教学设计说明:

  1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

  2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

  3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

  4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式解法 篇2

  教学目标

  (1)掌握;

  (2)知道一元二次不等式可以转化为一元一次不等式组;

  (3)了解简单的分式不等式的解法;

  (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

  (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

  (6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

  (7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

  教学重点:;

  教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

  教与学过程设计

  第一课时

  Ⅰ.设置情境

  问题:

  ①解方程

  ②作函数 的图像

  ③解不等式

  【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

  【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

  通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

  在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

  Ⅱ.探索与研究

  我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

  【答】方程 的解集为

  不等式 的解集为

  【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答)

  【答】不等式 的解集为

  我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

  下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

  如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

  【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

  现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

  【答】 的解集依次是

  的解集依次是

  它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

  课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

  (教师巡视,重点关注程度稍差的同学。)

  Ⅲ.演练反馈

  1.解下列不等式:

  (1) (2)

  (3) (4)

  2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

  3.解不等式

  (1) (2)

  参考答案

  1.(1) ;(2) ;(3) ;(4)R

  2.

  3.(1)

  (2)当 或 时, ,当 时,

  当 或 时, 。

  Ⅳ.总结提炼

  这节课我们学习了二次项系数 的,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

  (五)、课时作业

  (P20.练习等3、4两题)

  (六)、板书设计

  二课时

  Ⅰ.设置情境

  (通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

  上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

  Ⅱ.探索研究

  (学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

  生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

  生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

  师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

  (待学生阅读完毕,教师再简要讲解一遍.)

  [知识运用与解题研究]

  由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

  解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

  (1) (2)

  (分别为课本P21习题中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

  训练二 可化为一元一次不等式组来求解的不等式.

  目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

  【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

  这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

  (1) [P20练习中第1大题]

  (2) [P20练习中第1大题]

  (3) [P20练习中第2大题]

  (老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

  例5 解不等式

  因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

  解:(略)

  现在请同学们完成课本P21练习中第3、4两大题。

  (等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

  [训练三]用“符号法则”解不等式的复式训练。

  (通过多媒体或其他载体给出下列各题)

  1.不等式 与 的解集相同此说法对吗?为什么[补充]

  2.解下列不等式:

  (1) [课本P22第8大题(2)小题]

  (2) [补充]

  (3) [课本P43第4大题(1)小题]

  (4) [课本P43第5大题(1)小题]

  (5) [补充]

  (每题均先由学生说出解题思路,教师扼要板书求解过程)

  参考答案:

  1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

  2.(1)

  (2)原不等式可化为: ,即

  解集为 。

  (3)原不等式可化为

  解集为

  (4)原不等式可化为 或

  解集为

  (5)原不等式可化为: 或 解集为

  Ⅲ.总结提炼

  这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。

  (五)布置作业

  ((2)、(4);4;5;6。)

  (六)板书设计

一元二次不等式解法 篇3

  解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在R上恒成立或恒不成立。

  若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

  2.解简单一元高次不等式

  a.化为标准型。

  b.将不等式分解成若干个因式的积。

  c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

  3.解分式不等式的解

  a.化为标准型。

  b.可将分式化为整式,将整式分解成若干个因式的积。

  c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(如果不等式是非严格不等式,则要注意分式分母不等于0。)

  4.解含参数的一元二次不等式

  a.对二次项系数a的讨论。

  若二次项系数a中含有参数,则须对a的符号进行分类讨论。分为a>0,a=0,a<0。

  b.对判别式△的讨论

  若判别式△中含有参数,则须对△的符号进行分类讨论。分为△>0,△=0,△<0。

  c.对根大小的讨论

  若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类讨论。分为x1>x2,x1=x2,x1<x2。

  5.一元二次方程的根的分布问题

  a.将方程化为标准型。(a的符号)

  b.画图观察,若有区间端点对应的函数值小于0,则只须讨论区间端点的函数值。

  若没有区间端点对应的函数值小于0,则须讨论区间端点的函数值、△、轴。

  6.一元二次不等式的应用

  ⑴在R上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)

  a.对二次项系数a的符号进行讨论,分为a=0与a≠0。

  =0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

  a≠0时,则转化为二次函数图像全在x轴上方或下方。

  若f(x)>0,则要求a>0,△<0。

  若f(x)<0,则要求a<0,△<0。

  ⑵特殊题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小相同,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

  b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

  c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

  d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

一元二次不等式解法 篇4

  教学目标:

(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

  教学重点:一元二次不等式的解法(图象法)

  教学难点:

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

  教学方法与教学手段:

  尝试探索教学法、归纳概括。

  教学过程:

  一、复习引入

  1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

  学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

[师]请同学们画出图象,并回答问题。

  一次函数y=2x-7的图象如下:

  填表:

  当x 时,y = 0,即 2x-7 0;

  当x 时,y < 0,即 2x-7 0;

  当x 时,y >0,即 2x-7 0;

  注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y<0,y>0部分图象)

  从上例的特殊情形,你能得出什么结论?

  注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

  2.新课导入

[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

  二、讲解新课

  1、一元二次不等式解法的探索

[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

  填表:方程x2-4x+3=0(即y=0)的解是

  不等式x2-4x+3>0(即y>0)的解集是

  不等式x2-4x+3<0(即y<0)的解集是

  注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象)

[师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

  注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

  2、讲解例题

[师]接下来请同学们再来分析几个具体例子

(板书)例:解下列各不等式

(1)2x2-3x-2>0;

(2) -3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

  注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

  解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

  所以原不等式的.解集是{x| x<- x="">2 }

  四、课后作业:书P21/习题/

  五、教学设计说明:

  1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

  2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

  3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

  4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式解法 篇5

  教学目标:

  (1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

  (2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

  教学重点:一元二次不等式的解法(图象法)

  教学难点:

  (1)一元二次方程、一元二次不等式与二次函数的关系;

  (2)数形结合思想的渗透

  教学方法与教学手段:

  尝试探索教学法、归纳概括。

  教学过程:

  一、复习引入

  1.复习一元一次方程、一元一次不等式与一次函数的关系

  [师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

  学生可能回答是代数方法,也可能说是利用直线图象。

  [师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

  [师]请同学们画出图象,并回答问题。

  一次函数y=2x-7的图象如下:

  填表:

  当x 时,y = 0,即 2x-7 0;

  当x 时,y < 0,即 2x-7 0;

  当x 时,y > 0,即 2x-7 0;

  注:(1)引导学生由图象得出结论(数形结合)

  (2)由学生填空(一边演示y<0,y>0部分图象)

  从上例的特殊情形,你能得出什么结论?

  注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

  2.新课导入

  [师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

  二、讲解新课

  1、一元二次不等式解法的探索

  [师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

  填表:方程x2-4x+3=0(即y=0)的解是

  不等式x2-4x+3>0(即y>0)的解集是

  不等式x2-4x+3<0(即y<0)的解集是

  注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象)

  [师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

  注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

  2、讲解例题

  [师]接下来请同学们再来分析几个具体例子

  (板书)例:解下列各不等式

  (1)2x2-3x-2>0;

  (2) -3x2+6x>2;

  (3)4x2-4x+1>0;

  (4)-x2+2x-3>0.

  注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

  解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

  所以原不等式的解集是{x| x<- x="">2 }

  四、课后作业:书P21/习题/

  五、教学设计说明:

  1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

  2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

  3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

  4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式解法 篇6

  一、素质教育目标

  (一)知识教学点

  1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。

  2.掌握一元一次不等式组解集的几种情况。

  (二)能力训练点

  通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。

  (三)德育渗透点

  通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。

  (四)美育渗透点

  用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。

  二、学法引导

  1.教学方法:引导发现法、观察法、归纳总结法。

  2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。

  三、重点·难点·疑点及解决办法

  (一)重点

  理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。

  (二)难点

  正确理解一元一次不等式组解集的含义。

  (三)疑点

  弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解。

  (四)解决办法

  加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法。

  四、课时安排

  一课时.

  五、教具学具准备

  直尺、铅笔、投影仪或电脑、自制胶片。

  六、师生互动活动设计

  1.教师设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法。

  2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们。

  3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律。

  七、教学步骤

  (一)明确目标

  本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用。

  (二)整体感知

  要正确表示出不等式组的解集的关键在于学会用数轴表示。若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律。

  (三)教学过程

  1.创设情境,复习引入

  (1)什么是一元一次不等式,不等式的.解,不等式的解集,解不等式?

  (2)已知一个数比2大但比4小,请在数轴上表示数。

  学生活动:口答(1)题.板演(2)题,如下图所示:

  教师分析:一个数比2大但比4小,说明取值使不等式与都成立,把一元一次不等式与合在一起,就组成了一个一元一次不等式组,记作在数轴上表示不等式①②的解集

  可以看出,使不等式,都成立的值,是所有大于2并且小于4的数(记作),它们是不等式①、②的解集的公共部分,在数轴上表示成:

  不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集。

  【教法说明】通过学生板演,教师分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情。

  2.探索新知,讲授新课

  (1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集。

  说明:求不等式组解集的关键是找不等式解集的“公共部分”。若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解。

  (2)解不等式组:求不等式组解集的过程叫解不等式组。

  请同学们根据自己的理解,解答下列各题。

  例1利用数轴判断下列不等式组有无解集?若有解集,请求出。

  ① ② ③ ④

  学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确。

  解:① ②

  不等式组解集为不等式组解集为

  ③ ④

  不等式组解集为不等式组无解

  【教法说明】教学时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法。

  3.尝试反馈,巩固知识

  利用数轴判断下列不等式组有无解集?如有,请表示出来。

  教学活动:独立完成,同桌互阅,投影出示正确答案。

  教师活动:抽查部分学生,纠正错误。

  一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会。

  利用数轴解下列不等式组:

  学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

  答案:(1)(2)(3)(4)无解

  4.变式训练,培养能力

  单项选择:

  (1)不等式组的整数解是()

  A.0,1 B.0 C.1 D.

  (2)不等式组的负整数解是()

  A.-2,0,-1 B.-2 C.-2,-1 D.不能确定

  (3)不等式组的解集在数轴上表示正确的是()

  (4)不等式组的解集在数轴上表示正确的为()

  (5)根据图中所示可知不等式组的解集为()

  A.B.C.D.

  学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

  参考答案:C,C,D,A,C

  【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

  (四)总结、扩展

  不等式组

  1.图示

  2.折线特点

  3.解集

  4.解集与公共部分关系

  折线的公共部分

  即为不等式组的解集

  无解若,不等式组的解集是什么?有规律可寻吗?

  【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

  注意问题:教学时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

  八、布置作业

  (一)必做题:P78 1;P79 A组1.

  (二)选择题:

  填空题:

  1.不等式组的非负整数解是.

  2.若同时满足与,则的取值范围是.

  3.一元一次不等式组()的解集为,则与的大小关系为.

  【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

  参考答案

  略.

  九、板书设计

一元二次不等式解法 篇7

  教学目标

  1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.

  2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.

  3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.

  教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题

  教学难点?? 审题,根据实际问题列出不等式.

  例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??

  解:设累计购物x元,根据题意得

  (1)当0 < x≤50时,到甲、乙两商场购物花费一样;

  (2)当50< x≤100时,到乙商场购物花费少;

  (3)当x > 100时,到甲商场的花费为100+(x-100) , 到乙商场的花费为50+5(x-50)则

  50+5(x-50) > 100+(x-100),解之得x >150

  50+5(x-50) < 100+(x-100),解之得x < 150

  50+5(x-50) = 100+(x-100),?? 解之得x = 150

  答:当0 < x≤50时,到甲、乙两商场购物花费一样;

  当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。

  变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?

  解:设购买午餐x份,每份报价为“1”,根据题意得

  x > 100+(x-100),解之得x >

  x < 100+(x-100),解之得x <

  x = 100+(x-100),解之得x =

  答:当x>时,选乙公司较好;当0 < x <时,选甲公司较好;当x=时,两公司实际收费相同。

  作业

  1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种,一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种更合算?

  2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?

一元二次不等式解法 篇8

  一、学生知识状况分析

  学生的知识技能基础:学生在前面已经学习过一次函数,会求一次函数的表达式和画一次函数的图象,在本章前面几节课中,又学习了一元一次不等式概念,具备了解一元一次不等式的基本技能;

  学生活动经验基础:在相关知识的学习过程中,学生已经利用一次函数和一元一次不等式解决了一些简单的现实问题,感受到了一次函数和一元一次不等式解决问题的必要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

  二、教学任务分析

  数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课属于八下第一章第五节《一元一次不等式与一次函数》第一课时内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。教科书基于学生对一元一次不等式和一次函数认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:

  1、了解一元一次不等式与一次函数的关系.

  2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较

  3、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.

  4、训练大家能利用数学知识去解决实际问题的能力.

  5、体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.

  三、教学过程分析

  本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:布置作业。

  第一环节:情境引入

  活动内容:

  上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?

  活动目的:以“旧”引“新”,由原有的知识为基础,探讨新的内容。

  活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛.

  第二环节:活动探究、合作学习

  活动内容:

  下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.

  1.导探激励

  作出函数y=2x-5的图象,观察图象回答下列问题.

  (1)x取哪些值时,2x-5=0? (3)x取哪些值时,2x-5<0?

  (2)x取哪些值时,2x-5>0? (4)x取哪些值时,2x-5>3?

  学生活动:讨论后回答。

  活动目的:通过作函数图象、观察函数图象,进一步理解函数概念,并从中初步体会一元一次不等式与一次函数的内在联系。

  (1)当y=0时,2x-5=0,

  x= , 当x= 时,2x-5=0.

  (2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件,当y=0时,则有2x-5=0,解得x= .当x> 时,由y=2x-5可知 y>0.因此当x> 时,2x-5>0;

  (3)同理可知,当x< 时,有2x-5<0;

  (4)要使2x-5>3,也就是y=2x-5中的y大于3,那么过纵坐标为3的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(4,3),则当x>4时,有2x-5>3.

  活动效果:学生由讨论可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。

  2.想一想

  活动内容:

  如果y=-2x-5,那么当x取何值时,y>0?

  学生活动:在刚才讨论的基础上,学生尝试解决问题。

  活动目的:通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。

  首先要画出函数y=-2x-5的图象,如图:

  从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个y的值所对应的x的值都在A点的左侧,即为小于-的数,由-2x-5=0,得x=-,所以当x取小于-的值时,y>0。

  活动效果:通过完成这题进一步培养了学生的数形结合意识。

  3.达测深化

  活动内容:先画出图象,然后讨论回答。

  兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:

  (1)何时弟弟跑在哥哥前面?

  (2)何时哥哥跑在弟弟前面?

  (3)谁先跑过20 m?谁先跑过100 m?

  (4)你是怎样求解的?与同伴交流.

  活动目的:感知不等式、函数、方程的不同作用与内在联系。

  [解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得

  y1=4x y2=3x+9

  函数图象如图:

  从图象上来看:

  (1)当0<x<9时,弟弟跑在哥哥前面;

  (2)当x>9时,哥哥跑在弟弟前面;

  (3)弟弟先跑过20m,哥哥先跑过100m;

  (4)从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x的值小,说明用的时间就短.同理可知谁先跑过100 m.

  活动效果:绝大部分学生都能画出函数图象,并能借助函数图象完成上述问题。

  第三环节:运用巩固、练习提高

  1. 已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.

  活动内容:让学生分小组交流后作出解答,教师进行点评。

  活动目的:一方面对上环节中解决此类问题的方法进行巩固,另一方面,让学生在合作学习的过程中进一步体验一元一次不等式与一次函数的图象之间的结合是解决此类问题核心所在.

  解:如图所示:

  当x取小于 的值时,有y1>y2.

  活动效果:学生在解答上述问题时,表现出极大的兴趣, 90%的学生能够顺利完成.

  第四环节:课时小结

  活动内容:

  本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式。

  活动目的:让学生通过自我反思性活动增强对相关知识和方法的理解水平。感受到数学的作用。

  第五环节:布置作业

  读一读 习题 1、2

  四、教学反思

  1、 函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型。本节的目的就是通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。本节课的教学过程中应注意引导学生初步体会从整体中把握部分的思维方法,渗透函数、方程、不等式思想和数形结合等重要的数学思想,拓宽学生视野。相信学生并为学生提供充分展示自己的机会

  2、教学过程中要为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。

  3、注意改进的方面:

  在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

一元二次不等式解法【汇总8篇】相关文章:

七年级下册数学一元一次不等式知识点3篇 七年级下册数学题一元一次不等式

不等式教学反思12篇 初中数学不等式教学反思

解一元一次不等式教学反思2篇(一元一次不等式的解法课后反思)

一次函数与一元一次不等式说课稿2篇 二次函数与一元二次方程和不等式说课稿

一元二次不等式的解法的教学设想3篇(二元一次不等式教学设计)

七年级数学不等式试题|七年级下册数学不等式3篇(关于七年级不等式的数学题)

七年级数学不等式习题3篇(7年级下册数学不等式题)

2022基本不等式教学反思范文3篇(基本不等式的教学反思)

基本不等式教学反思8篇 不等式的基本性质的教学反思

XX届高考数学第一轮不等式专项复习教案3篇