初中数学知识点整理5篇(海南初中数学知识点)

时间:2023-11-03 12:52:00 综合范文

  下面是范文网小编整理的初中数学知识点整理5篇(海南初中数学知识点),欢迎参阅。

初中数学知识点整理5篇(海南初中数学知识点)

初中数学知识点整理1

  一、实数

  一、重要概念

  1.数的分类及概念数系表:

  说明:“分类”的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:x≥0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:①定义及表示法

  ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

  4.相反数:①定义及表示法

  ②性质:A.a≠0时,a≠—a;B.a与—a在数轴上的位置;C.和为0,商为—1。

  5.数轴:①定义(“三要素”)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n—1

  偶数:2n(n为自然数)

  7.绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

  二、二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的'两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

  4.二元一次方程组的解法:

  (1)代入消元法;(2)加减消元法;

  (3)注意:判断如何解简单是关键.

  ※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

  三、一元一次不等式(组)

  1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

  2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

  不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

  3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

  4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

  5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点

初中数学知识点整理2

  二次函数基本知识点

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的'互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a

  抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P[-b/2a,(4ac-b^2;)/4a]。

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  二次函数的三种表达式

  ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  ②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k

  ③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)

  以上3种形式可进行如下转化:

  ①一般式和顶点式的关系

  对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即

  h=-b/2a=(x1+x2)/2

  k=(4ac-b^2)/4a

  ②一般式和交点式的关系

  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

初中数学知识点整理3

  初中数学长方形的中考知识点集锦

  长方形也就是我们所说的矩形,是基础的平面图形。

  长方形

  有一个角是直角的.平行四边形叫做长方形 (rectangle)。又叫矩形。

  长方形长与宽的定义:

  第一种意见:长方形长的那条边叫长,短的那条边叫宽。

  第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。

  长方形的性质

  ①两条对角线相等;

  ②两条对角线互相平分;

  ③两组对边分别平行;

  ④两组对边分别相等 ;

  ⑤四个角都是直角;

  ⑥有2条对称轴(正方形有4条)。

  以上的内容是长方形的性质及定义,请大家做好笔记了。

初中数学知识点整理4

  圆柱体要领:如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。

  圆柱体的定义

  1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

  2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的'空间叫做圆柱体。

  性质 1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。

  2.圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。

  3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形或正方形。

  圆柱的侧面积=底面周长x高,即:

  S侧面积=Ch=2πrh

  底面周长C=2πr=πd

  圆柱的表面积=侧面积+底面积x2=2πr2+Ch=2πr(r+h)

  4.圆柱的体积=底面积x高

  即 V=S底面积×h=(π×r×r)h

  5.等底等高的圆柱的体积是圆锥的3倍 6.圆柱体可以用一个平行四边形围成

  圆柱的表面积= 圆柱的表面积=侧面积+底面积x2

  6.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,体积不变、表面积增加两个直径X高的长方形。

  7.圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。

初中数学知识点整理5

  一、数与代数A:数与式:

  1:有理数

  有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

  在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法: 减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2:实数

  无理数:无限不循环小数叫无理数

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  3:代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4:整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的'指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。

  A0=1,A-P=1/AP

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式

  方法:提公因式法/运用公式法/分组分解法/十字相乘法

  分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母的分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

  B:方程与不等式

  1:方程与方程组

  一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2:不等式与不等式组

  不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

  3:函数

  变量:因变量,自变量。

  在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。

  一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  二、空间与图形

  A:图形的认识:

  1:点,线,面

  点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

  展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  3视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

  2:角

  线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

  比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

  角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时.

初中数学知识点整理5篇(海南初中数学知识点)相关文章:

初中数学知识点总结13篇(初一数学知识点总结)

初中数学知识点10篇

初中数学知识点总结7篇

初中数学知识点9篇

初中数学知识点总结 8篇(人教版初中数学知识点总结)

北京版初中数学知识点总结5篇(北京初中数学知识点大纲)

初中数学知识点归纳.12篇 初中数学知识点详细

初中数学《平面直角坐标》知识点2篇(初中数学《平面直角坐标》知识点讲解)

初中数学知识点12篇 初中数学知识点详细

初中数学圆周角的知识点整理2篇(初中圆周角定理)