八年级数学教案模板6篇(初中数学八年级教案设计)

时间:2023-09-05 17:45:00 教案

  下面是范文网小编分享的八年级数学教案模板6篇(初中数学八年级教案设计),供大家赏析。

八年级数学教案模板6篇(初中数学八年级教案设计)

八年级数学教案模板1

  一、素质教育目标

  (一)知识教学点

  1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

  2.使学生理解判定定理与性质定理的区别与联系.

  3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

  (二)能力训练点

  1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

  2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

  (三)德育渗透点

  通过一题多解激发学生的学习兴趣.

  (四)美育渗透点

  通过学习,体会几何证明的方法美.

  二、学法引导

  构造逆命题,分析探索证明,启发讲解.

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形的判定定理1、2、3的应用.

  2.教学难点:综合应用判定定理和性质定理.

  3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

  (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

八年级数学教案模板2

  教学目标

  一、教学知识点:

  1.旋转的定义.2.旋转的基本性质.

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义.

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.

  教学重点:旋转的基本性质.

  教学难点:探索旋转的基本性质.

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一.巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的.

  2.每个物体的转动都是向同一个方向转动.

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.

  二.讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.

  议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.

  由此我们得到了旋转的基本性质:经过旋转,图形上的`每一点都绕旋转中心沿相同方向转动了相同的角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.

  解:(见课本68页)

  书上68页做一做

  三.课堂练习

  课本P69随堂练习.

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.

  四.课时小结

  五.课后作业:课本P69习题3.4 1、2、3.

  六.活动与探究

  1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.

  2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.

  板书设计:

  教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。

八年级数学教案模板3

  教学目标

  ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

  ②理解整式除法的算理,发展有条理的思考及表达能力。

  教学重点与难点

  重点:整式除法的运算法则及其运用。

  难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

  教学准备

  卡片及多媒体课件。

  教学设计

  情境引入

  教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

  重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

  注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

  探究新知

  (1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

  (2)你能利用(1)中的方法计算下列各式吗?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根据(2)说说单项式除以单项式的运算法则吗?

  注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

  单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

  归纳法则

  单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

  应用新知

  例2计算:

  (1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

  注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

  巩固新知教科书第162页练习1及练习2。

  学生自己尝试完成计算题,同桌交流。

  注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

  作业

  1。必做题:教科书第164页习题15。3第1题;第2题。

  2。选做题:教科书第164页习题15。3第8题

八年级数学教案模板4

  教材分析

  本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

  学情分析

  本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

  从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

  教学目标

  1、知识与技能:

  掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。

  2、过程与方法:

  (1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;

  (2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

  3、情感态度与价值观:

  (1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

  (2)通过性质的推导体会“特殊。

八年级数学教案模板5

  课题:三角形全等的判定(三)

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯.

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)、此公理与前面学过的公理区别与联系

  (4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1) 讲解例1。学生分析完成,教师注重完成后的点评。

  例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1=

  只要证什么?(3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

八年级数学教案模板6

  知识要点

  1、函数的概念:一般地,在某个变化过程中,有两个 变量x和 y,如果给定一个x值,

  相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。

  2、一次函数的概念:若两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,则称y是x的一次函数, x为自变量,y为因变量。特别地,当b=0 时,称y 是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而 一次函 数不一定都是正比例函数.

  3、正比例函数y=kx的性质

  (1)、正比例函数y=kx的图象都经过

  原点(0,0),(1,k)两点的一条直线;

  (2)、当k0时,图象都经过一、三象限;

  当k0时,图象都经过二、四象限

  (3)、当k0时,y随x的增大而增大;

  当k0时,y随x的增大而减小。

  4、一次函数y=kx+b的性质

  (1)、经过特殊点:与x轴的交点坐标是 ,

  与y轴的交点坐标是 .

  (2)、当k0时,y随x的增大而增大

  当k0时,y随x的增大而减小

  (3)、k值相同,图象是互相平行

  (4)、b值相同,图象相交于同一点(0,b)

  (5)、影响图象的两个因素是k和b

  ①k的正负决定直线的方向

  ②b的正负决定y轴交点在原点上方或下方

  5.五种类型一次函数解析式的确定

  确定一次函数的解析式,是一次函数学习的重要内容。

  (1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式

  例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

  解:把点(2,-6)代入y=3x+b,得

  -6=32+b 解得:b=-12

  函数的解析式为:y=3x-12

  (2)、根据直线经过两个点的坐标,确定函数的解析式

  例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),

  求函数的表达式。

  解:把点A(3,4)、点B(2,7)代入y=kx+b,得

  ,解得:

  函数的解析式为:y=-3x+13

  (3)、根据函数的图像,确定函数的解析式

  例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x

  (小时)之间的关系.求油箱里所剩油y(升)与行驶时间x

  (小时)之间的函数关系式,并且确定自变量x的取值范围。

  (4)、根据平移规律,确定函数的解析式

  例4、如图2,将直线 向上平移1个单位,得到一个一次

  函数的图像,那么这个一次函数的解析式是 .

  解:直线 经过点(0,0)、点(2,4),直线 向上平移1个单位

  后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为 y=kx+b,

  得 ,解得: ,函数的解析式为:y=2x+1

  (5)、根据直线的对称性,确定函数的解析式

  例5、已知直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。

  例6、已知直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。

  例7、已知直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。

  经典训练:

  训练1:

  1、已知梯形上底的长为x,下底的长是10,高是 6,梯形的面积y随上底x的变化而变化。

  (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?

  (2)若y是x的函数,试写出y与x之间的函数关系式 。

  训练2:

  1.函数:①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

  一次函数有___ __;正比例函数有____________(填序号).

  2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )

  A.k1 B.k-1 C.k1 D.k为任意实数.

  3.若一次函数y=(1+2k)x+2k-1是正比 例函数,则k=_______.

  训练3:

  1 . 正比例函数y=k x,若y随x的增大而减 小,则k______.

  2. 一次函数y=mx+n的图象如图,则下面正确的是( )

  A.m0 B.m0 C.m0 D.m0

  3.一次函数y=-2x+ 4的图象经过的象限是____,它与x轴的交 点坐标是____,与y轴的交点坐标是____.

  4.已知一次函 数y =(k-2)x+(k+2),若它的图象经过原点,则k=_____;

  若y随x的增大而增大,则k__________.

  5.若一次函数y=kx-b满足kb0,且函数值随x的减小而增大,则它的大致图象是图中的( )

  训练4:

  1、 正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.

  2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式 .

  3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。

  4、已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。

  5、已知y-1与x成正比例,且 x=-2时,y=-4.

  (1)求出y与x之间的函数关系式;

  (2)当x=3时,求y的值.

  一、填空题(每题2分,共26分)

  1、已知 是整数,且一次函数 的图象不过第二象限,则 为 .

  2、若直线 和直线 的交点坐标为 ,则 .

  3、一次函数 和 的图象与 轴分别相交于 点和 点, 、 关于 轴对称,则 .

  4、已知 , 与 成正比例, 与 成反比例,当 时 , 时, ,则当 时, .

  5、函数 ,如果 ,那么 的取值范围是 .

  6、一个长 ,宽 的矩形场地要扩建成一个正方形场地,设长增加 ,宽增加 ,则 与 的函数关系是 .自变量的取值范围是 .且 是 的 函数.

  7、如图 是函数 的一部分图像,(1)自变量 的取值范围是 ;(2)当 取 时, 的最小值为 ;(3)在(1)中 的取值范围内, 随 的增大而 .

  8、已知一次函数 和 的图象交点的横坐标为 ,则 ,一次函数 的图象与两坐标轴所围成的三角形的面积为 ,则 .

  9、已知一次函数 的图象经过点 ,且它与 轴的交点和直线 与 轴的交点关于 轴对称,那么这个一次函数的解析式为 .

  10、一次函数 的图象过点 和 两点,且 ,则 , 的取值范围是 .

  11、一次函数 的图象如图 ,则 与 的大小关系是 ,当 时, 是正比例函数.

  12、 为 时,直线 与直线 的交点在 轴上.

  13、已知直线 与直线 的交点在第三象限内,则 的取值范围是 .

  二、选择题(每题3分,共36分)

  14、图3中,表示一次函数 与正比例函数 、 是常数,且 的图象的是( )

  15、若直线 与 的交点在 轴上,那么 等于( )

  A.4 B.-4 C. D.

  16、直线 经过一、二、四象限,则直线 的图象只能是图4中的( )

  17、直线 如图5,则下列条件正确的是( )

  18、直线 经过点 , ,则必有( )

  A.

  19、如果 , ,则直线 不通过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  20、已知关于 的一次函数 在 上的函数值总是正数,则 的取值范围是

  A. B. C. D.都不对

  21、如图6,两直线 和 在同一坐标系内图象的位置可能是( )

  图6

  22、已知一次函数 与 的图像都经过 ,且与 轴分别交于点B, ,则 的面积为( )

  A.4 B.5 C.6 D.7

  23、已知直线 与 轴的交点在 轴的正半轴,下列结论:① ;② ;③ ;④ ,其中正确的个数是( )

  A.1个 B.2个 C.3个 D.4个

  24、已知 ,那么 的图象一定不经过( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发 小时,距A站 千米,则 与 之间的关系可用图象表示为( )

  三、解答题(1~6题每题8分,7题10分,共58分)

  26、如图8,在直角坐标系内,一次函数 的图象分别与 轴、 轴和直线 相交于 、 、 三点,直线 与 轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是 ,求这个一次函数解析式.

  27、一次函数 ,当 时,函数图象有何特征?请通过不同的取值得出结论?

  28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

  (1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.

  (2)在同一坐标系中,画出这三个函数的图象.

  29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

  (1)设用电 度时,应交电费 元,当 100和 100时,分别写出 关于 的函数关系式.

  (2)小王家第一季度交纳电费情况如下:

  月份 一月份 二月份 三月份 合计

  交费金额 76元 63元 45元6角 184元6角

  问小王家第一季度共用电多少度?

  30、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至 元,则本年度新增用电量 (亿度)与( 0.4)(元)成反比例,又当 =0.65时, =0.8.

  (1)求 与 之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-成本价)]

  31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离 与B站开出时间 的关系;(2)如果汽车再行驶30分,离A站多少千米?

  32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)

  路程/千米 运费(元/吨、千米)

  甲库 乙库 甲库 乙库

  A地 20 15 12 12

  B地 25 20 10 8

  (1)设甲库运往A地水泥 吨,求总运费 (元)关于 (吨)的函数关系式,画出它的图象(草图).

  (2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?

八年级数学教案模板6篇(初中数学八年级教案设计)相关文章:

八年级数学教案3篇

八年级数学教案5篇

有关八年级数学教案模板3篇 八年级数学超全教案

八年级数学教案范文5篇(初二数学备课教案范文)

八年级数学教案范文4篇 初中数学八上教案

八年级数学教案4篇

八年级数学教案模板5篇 初中数学八上教案

关于八年级数学教案3篇(初中数学八年级教案设计)

八年级数学教案范文6篇(初二数学备课教案范文)

八年级数学教案范文3篇 初中数学八年级教案设计