数学等差数列教案(精品10篇)

时间:2023-09-20 08:26:57 教案

数学等差数列教案 篇1

教学准备

教学目标

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

  等比数列性质请同学们类比得出。

【方法规律】

  1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

  2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

  a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

  3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

  例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

  例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

  例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

数学等差数列教案 篇2

[教学目标]

  1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

  1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

  一。课题引入

  创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

  二、新课探究

(一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

  根据等差数列的定义可得:

  因此等差数列的通项公式就是:,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

  将以上-1个式子相加得等差数列的通项公式就是:,

  三、应用与探索

  例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

  例2、在等差数列中,已知=10,=31,求首项与公差d.

  解:由,得。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

  2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

  四、小结

  1、等差数列的通项公式:

  公差;

  2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3、判断一个数列是否为等差数列只需看是否为常数即可;

  4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

  五、作业:

  1、必做题:课本第40页习题第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3+???+100=

.1等差数列学案

数学等差数列教案 篇3

  1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

  1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

  一。课题引入

  创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

  二、新课探究

(一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

  根据等差数列的定义可得:

  因此等差数列的通项公式就是:,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

  将以上-1个式子相加得等差数列的通项公式就是:,

  三、应用与探索

  例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

  例2、在等差数列中,已知=10,=31,求首项与公差d.

  解:由,得。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

  2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

  四、小结

  1.等差数列的通项公式:

  公差;

  2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3.判断一个数列是否为等差数列只需看是否为常数即可;

  4.利用从特殊到一般的思维去发现数学系规律或解决数学问题。

  五、作业:

  1、必做题:课本第40页习题第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3+???+100=

数学等差数列教案 篇4

一、预习问题:

  1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

  2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,

  即 或 。

  3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

  4、等差数列的通项公式: 。

  5、判断正误:

①1,2,3,4,5是等差数列; ( )

②1,1,2,3,4,5是等差数列; ( )

③数列6,4,2,0是公差为2的等差数列; ( )

④数列 是公差为 的等差数列; ( )

⑤数列 是等差数列; ( )

⑥若 ,则 成等差数列; ( )

⑦若 ,则数列 成等差数列; ( )

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )

⑨等差数列的公差是该数列中任何相邻两项的差。 ( )

  6、思考:如何证明一个数列是等差数列。

二、实战操作:

  例1、(1)求等差数列8,5,2,的第20项。

(2) 是不是等差数列 中的项?如果是,是第几项?

(3)已知数列 的公差 则

  例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

  例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

数学等差数列教案 篇5

  教学目标:

  1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

  2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

  3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  教学重点:

  等差数列的.概念及通项公式。

  教学难点:

  (1)理解等差数列“等差”的特点及通项公式的含义。

  (2)等差数列的通项公式的推导过程及应用。

  教具:多媒体、实物投影仪

  教学过程:

  一、复习引入:

  1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

  2.由生活中具体的数列实例引入

  (1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:

  你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

  (2)某剧场前10排的座位数分别是:

  48、46、44、42、40、38、36、34、32、30

  引导学生观察:数列①、②有何规律?

  引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差,数列②从左到右相差-2。

  二.新课探究,推导公式

  1.等差数列的概念

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

  强调以下几点:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  所以上面的2、3都是等差数列,他们的公差分别为0,-2。

  在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

  [练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

  ,5,7,…… √ d=2

  ,6,3,0,-3,…… √ d=-3

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

  2.等差数列通项公式

  如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

  a2 - a1 =d即:a2 =a1 +d

  a3 – a2 =d即:a3 =a2 +d = a1 +2d

  a4 – a3 =d即:a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  进而归纳出等差数列的通项公式:an=a1+(n-1)d

  此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

  n=a1+(n-1)d

  a2-a1=d

  a3-a2=d

  a4-a3 =d

  ……

  an –a(n-1) =d

  将这(n-1)个等式左右两边分别相加,就可以得到

  an-a1=(n-1)d

  即an=a1+(n-1)d (Ⅰ)

  当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

  三.应用举例

  例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

  例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  四.反馈练习

  练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

  五.归纳小结提炼精华

  (由学生总结这节课的收获)

  1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式an= a1+(n-1) d会知三求一

  六.课后作业运用巩固

  必做题:课本P284习题A组第3,4,5题

数学等差数列教案 篇6

  一、知识与技能

  1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

  2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.

  二、过程与方法

  1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

  2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.

  三、情感态度与价值观

  通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.

  教学过程

  导入新课

  师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,13,8,…;

  (4)10 072,10 144,10 216,10 288,10 366,….

  请你们来写出上述四个数列的第7项.

  生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.

  师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.

  生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.

  师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.

  生:1每相邻两项的差相等,都等于同一个常数.

  师:作差是否有顺序,谁与谁相减?

  生:1作差的顺序是后项减前项,不能颠倒.

  师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.

  这就是我们这节课要研究的内容.

  推进新课

  等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).

  (1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

  (2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.

  师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

  生:从“第二项起”和“同一个常数”.

  师::很好!

  师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

  生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为,….

  师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.

  [合作探究]

  等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

  生:a2-a1=d,即a2=a1+d.

  师:对,继续说下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?

  生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.

  师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

  生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:

  因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.

  师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.

  [教师:精讲]

  由上述关系还可得:am=a1+(m-1)d,

  即a1=am-(m-1)d.

  则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

  即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)

  由此我们还可以得到.

  [例题剖析]

  【例1】(1)求等差数列8,5,2,…的第20项;

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

  生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.

  师:好!下面我们来看看第(2)小题怎么做.

  生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).

  由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.

  师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).

  说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.

  【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

  例题分析:

  师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

  生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.

  师:说得对,请你来求解.

  生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,

  所以我们说{an}是等差数列,首项a1=p+q,公差为p.

  师:这里要重点说明的是:

  (1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….

  (2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

  (3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习

  (1)求等差数列3,7,11,…的第4项与第10项.

  分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.

  解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

  评述:关键是求出通项公式.

  (2)求等差数列10,8,6,…的第20项.

  解:根据题意可知a1=10,d=8-10=-2.

  所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

  评述:要求学生:注意解题步骤的规范性与准确性.

  (3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.

  分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.

  解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.

  令7n-5=100,解得n=15.所以100是这个数列的第15项.

  (4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.

  解:由题意可知a1=0,,因而此数列的通项公式为.

  令,解得.因为没有正整数解,所以-20不是这个数列的项.

  课堂小结

  师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

  生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).

数学等差数列教案 篇7

  教学准备

  教学目标

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

  教学重难点

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

  教学过程

  等比数列性质请同学们类比得出.

  【方法规律】

  1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的`运算题.方程观点是解决这类问题的基本数学思想和方法.

  2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数

  a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

  3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.

  【示范举例】

  例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.

  (2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

  例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

  例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

数学等差数列教案 篇8

  一、教学内容分析

  本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

  二、学生学习情况分析

  教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

  三、设计思想

  1.教法

  ⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

  ⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

  ⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法

  引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

  用多种方法对等差数列的通项公式进行推导。

  在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学目标

  通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

  五、教学重点与难点

  重点:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  难点:

  ①理解等差数列“等差”的特点及通项公式的含义。

  ②理解等差数列是一种函数模型。

  关键:

  等差数列概念的理解及由此得到的“性质”的方法。

  六、教学过程(略)

数学等差数列教案 篇9

  2。2。1等差数列学案

  一、预习问题:

  1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。

  2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,

  即 或 。

  3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。

  4、等差数列的通项公式: 。

  5、判断正误:

  ①1,2,3,4,5是等差数列; ( )

  ②1,1,2,3,4,5是等差数列; ( )

  ③数列6,4,2,0是公差为2的等差数列; ( )

  ④数列 是公差为 的等差数列; ( )

  ⑤数列 是等差数列; ( )

  ⑥若 ,则 成等差数列; ( )

  ⑦若 ,则数列 成等差数列; ( )

  ⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )

  ⑨等差数列的.公差是该数列中任何相邻两项的差。 ( )

  6、思考:如何证明一个数列是等差数列。

  二、实战操作:

  例1、(1)求等差数列8,5,2,的第20项。

  (2) 是不是等差数列 中的项?如果是,是第几项?

  (3)已知数列 的公差 则

  例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?

  例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。

数学等差数列教案 篇10

  教学准备

  教学目标

  1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

  2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

  归纳——猜想——证明的数学研究方法;

  3、数学思想:培养学生分类讨论,函数的数学思想。

  教学重难点

  重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

  难点:等比数列的性质的探索过程。

  教学过程:

  1、问题引入:

  前面我们已经研究了一类特殊的数列——等差数列。

  问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

  (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  要想确定一个等差数列,只要知道它的首项a1和公差d。

  已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

  师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  (第一次类比)类似的,我们提出这样一个问题。

  问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

  (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

  2、新课:

  1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

  师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

  师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

  公式的推导:(师生共同完成)

  若设等比数列的公比为q和首项为a1,则有:

  方法一:(累乘法)

  3)等比数列的性质:

  下面我们一起来研究一下等比数列的性质

  通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

  问题4:如果{an}是一个等差数列,它有哪些性质?

  (根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

  3、例题巩固:

  例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。——

  答案:1458或128。

  例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=10.

  例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

  (本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

  1、小结:

  今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

  我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

  2、作业:

  P129:1,2,3

  思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

  教学设计说明:

  1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

  2、教学设计过程:本节课主要从以下几个方面展开:

  1)通过复习等差数列的定义,类比得出等比数列的定义;

  2)等比数列的通项公式的推导;

  3)等比数列的性质;

  有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

  知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

  在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

  在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

  通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

  等比性质的研究是本节课的——,通过类比

  关于例题重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

数学等差数列教案(精品10篇)相关文章:

有关八年级数学教案模板4篇(八年级数学习题课教案)

八年级数学教案范文6篇(初中数学八上教案)

人教版六年级下册数学教案范文3篇 小学人教版数学六年级下册教案

关于人教版三年级下册数学教案范文4篇 人教版三年级数学下册教学教案

人教版三年级下册数学教案范文3篇 三年级下册数学商是几位数教案

有关八年级数学教案4篇 初中数学八年级教案设计

北师大版四年级数学下册教案11篇(四年级数学北师大版第二单元教案)

圆的面积六年级数学教案3篇 六年级圆的面积推导公式

小班数学教案3篇

八年级数学教案范文5篇 初中8年级数学教案