高二数学优秀教案4篇(高二数学课堂教学案例)

时间:2023-12-23 14:04:00 教案

  下面是范文网小编收集的高二数学优秀教案4篇(高二数学课堂教学案例),以供借鉴。

高二数学优秀教案4篇(高二数学课堂教学案例)

高二数学优秀教案1

  1.预习教材,问题导入

  根据以下提纲,预习教材P54~P57,回答下列问题。

  (1)在教材P55的“探究”中,怎样获得样本?

  提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取。

  (2)最常用的简单随机抽样方法有哪些?

  提示:抽签法和随机数法。

  (3)你认为抽签法有什么优点和缺点?

  提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用。

  (4)用随机数法读数时可沿哪个方向读取?

  提示:可以沿向左、向右、向上、向下等方向读数。

  2.归纳总结,核心必记

  (1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

  (2)最常用的简单随机抽样方法有两种——抽签法和随机数法。

  (3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  (4)随机数法就是利用随机数表、随机数骰子或计算机产生的.随机数进行抽样。

  (5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的。

  [问题思考]

  (1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?

  提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关。

  (2)抽签法与随机数法有什么异同点?

  提示:

  相同点

  ①都属于简单随机抽样,并且要求被抽取样本的总体的个体数有限;

  ②都是从总体中逐个不放回地进行抽取

  不同点

  ①抽签法比随机数法操作简单;

  ②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本

高二数学优秀教案2

  教学目标

  1、知识与技能

  (1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

  (2)能熟练运用正弦函数的性质解题。

  2、过程与方法

  通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

  3、情感态度与价值观

  通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

  教学重难点

  重点:正弦函数的'性质。

  难点:正弦函数的性质应用。

  教学工具

  投影仪

  教学过程

  【创设情境,揭示课题】

  同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

  【探究新知】

  让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

  (1)正弦函数的定义域是什么?

  (2)正弦函数的值域是什么?

  (3)它的最值情况如何?

  (4)它的正负值区间如何分?

  (5)?(x)=0的解集是多少?

  师生一起归纳得出:

  1.定义域:y=sinx的定义域为R

  2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

  再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

  课后小结

  归纳整理,整体认识

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  课后习题

  作业:习题1—4第3、4、5、6、7题.

高二数学优秀教案3

  教学目的:

  1.掌握常用基本不等式,并能用之证明不等式和求最值;

  2.掌握含绝对值的不等式的性质;

  3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式.学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关

  教学过程:

  一、复习引入:本章知识点

  二、讲解范例:几类常见的问题

  (一) 含参数的不等式的解法

  例1解关于x的不等式 .

  例2解关于x的不等式 .

  例3解关于x的不等式 .

  例4解关于x的不等式

  例5 满足 的x的集合为A;满足 的x

  的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若AB为仅含一个元素的集合,求a的值.

  (二)函数的最值与值域

  例6 求函数 的最大值,下列解法是否正确?为什么?

  解一: ,

  解二: 当 即 时,

  例7 若 ,求 的最值。

  例8 已知x , y为正实数,且 成等差数列, 成等比数列,求 的取值范围.

  例9 设 且 ,求 的最大值

  例10 函数 的最大值为9,最小值为1,求a,b的值。

  三、作业:

  1.

  2. , 若 ,求a的取值范围

  3.

  4.

  5.当a在什么范围内方程: 有两个不同的负根

  6.若方程 的'两根都对于2,求实数m的范围

  7.求下列函数的最值:

  1

  2

  8.1 时求 的最小值, 的最小值

  2设 ,求 的最大值

  3若 , 求 的最大值

  4若 且 ,求 的最小值

  9.若 ,求证: 的最小值为3

  10.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和

  高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学优秀教案4

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的`取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

高二数学优秀教案4篇(高二数学课堂教学案例)相关文章:

高二数学下学期教学工作计划4篇(高二数学第二学期教学工作计划)

高二数学教学计划5篇(临渭区高二数学下学期教学计划)

高二数学教学计划6篇 临渭区高二数学下学期教学计划

小学四年级数学优秀教案10篇 四年级数学教案大全

四年级上册数学优秀教案6篇 人教四上数学优秀教案

高二数学教学计划8篇(旧版高二数学学期教学计划)

幼儿园中班数学优秀教案《钓鱼乐》11篇(中班数学钓小鱼教案)

高二学期数学教师工作计划3篇(高二上学期数学老师工作计划)

高二数学备课组工作计划10篇(高二数学备课组活动计划)

高二数学备课组工作计划7篇 高二数学备课组活动计划