初中数学教学教案 篇1
教材分析
整式的除法包括单项式除以单项式,多项式除以多项式,是以后学习因式分解、分式、根式、函数的基础,也是初中数学的重点之一。
单项式除以单项式是根据乘、除的互逆关系总结的,它是幂运算性质的继续,也是学好多项式除以多项式的关键。两个单项式相除,分三个步骤:即系数相除,同底数的`幂相除和只在被除式里字母的处理。
学情分析
1.教学情况来看本班学生能认真上好数学课,大部分学生能独立完成作业,对于书本的基础知识掌握较好。
2.本班大部分学生基础较好,在整式的除法这一课时,内容比较简单,整一节课以“老师引导--学生练习”为主要形式。
3.我班学生比较弱的地方是有些学生对于解决问题的能力较差,对文字的理解能力较差,如有些知识稍稍拐个弯就不知所措,缺乏灵活运用知识的本领。
教学目标
(一)知识与能力
1.单项式除以单项式的运算法则及其应用.
2.单项式除以单项式的运算算理.
(二)过程与方法
1.经历探索单项式除以单项式的运算法则的过程, 会进行单项式与单项式的除法运算.
2.理解单项式与单项式相除的算理,发展有条理的思考及表达能力.
(三)情感态度与价值观
1.从探索单项式除以单项式的运算法则的过程中,获得成功的体验, 积累研究数学问题的经验.
2.提倡多样化的算法,培养学生的创新精神与能力.
教学重点和难点
重点:单项式除以单项式的运算法则及其应用;
难点:探索单项式与单项式相除的运算法则的过程。
教学过程
教学环节教师活动预设学生行为设计意图
一复习导入幻灯片出示
1、叙述同底数幂的除法性质.
2、计算:
(1)a10÷a3
(2)y7÷y6
(3)105÷105
(4)y3÷y31、学生集体回答
2、开火车形式回答回顾旧知识,为本节课铺垫
二学生动手得到法则
1、组织学生思考与探究P161问题与思考
2、教师可参与到学生的讨论中,对遇到困难的同学及时予以启发和帮助。
3、板书法则学生以小组为单位进行探索交流学生可能会用不同的方法(约分或逆运算)解决。学生不一定说得完整,可多人回答补充完善运算法则。
三例题讲解
1、出示P161例2,补充
(3)(2x3y2)3·(-6x2y3)÷4x5y2
(4)15(3b-c)4÷5(3b-c)2
2、组织学生议一议怎样单÷单(结果为整式)的运算。引导学生细心观察商的系数,字母,指数是怎样决定的。
3、学生口述,教师板书。1、学生说明运算理由后回答教师提问。
2、学生用自己的语言叙述。
3、(3)(4)问由学生当小老师讲解,不完善,教师补充。1、此时正是提高学生的数学用语的准确性的好时机。板书的好处在于系数,字母,指数逐一解决,由停顿便于学生思考与理解。
2、把(3b-c)“看成是”一个“单项式”,体现一种转化的思想。
四 随堂练习
1、课本P162练习1、2.
2、做游戏:你来说,我来做,你检查。(今天学的内容)
1、抽四名学生上台板书,其余的同学在练习本上完成。
2、同桌之间,让一个同学来出题,另一个同学来做,看谁做得好。
1、本节课内容深化。
2、游戏目的在于提高学生兴趣。
五小结与作业小结课堂内容,布置作业个别回答和集体回答结合。回顾探索过程,着重理解法制并熟练运算。
板书设计
§ 1 整式的除法 例2:
单项式除以单项式: (1) 28x4y2÷7x3y (2) -5a5b3c÷15a4b
(1)系数相除,作为商的系数 =(28÷7)·x4-3·y2-1 =(-5÷15)a5-4b3-1c
(2)同底数幂相除, =4xy. = -ab2c.
(3)对于只在被除数式里含有的字母,连同它的指数作为商的一个因式。
教学反思
这节课可以说学生动的多,教师讲的少。学生的主体地位体现的还算可以。主要是以学生的活动为主的。基本符合新课改精神。课堂上教师的指导提示基本到位,学生能够在教师的指导下进行活动。基本完成了教学任务。
完成教学后,我和其他老师进行探讨,找到了在课堂上出现的一些问题结合上课的内容和老师的研讨,我萌发了一些思考:整式的除法这一课时,内容比较简单,我深深感到,要把它上好,也是不那么容易的。整一节课以“老师引导--学生练习”为主要形式。单项式除以单项式的内容在课堂内是完成了。但是还感觉有所欠缺,来不及深化与拓展。存在的问题有:内容整合后,虽然比较有系统性,但时间紧,给学生思考、练习的时间太少,来不及深化与拓展,只学了一点表皮的东西,学生的思维没有得到充分发散,不利于后续学习。这一节课应尽量让学生板演,这样做的好处在于系数、字母、指数逐一解决,有停顿,便于发现学生问题,也便于学生思考。
初中数学教学教案 篇2
课题教案:完全平方公式
学科:数学
年级:七年级
1内容本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。使学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。
2教学目标
知识目标:会推导完全平方公式,并能运用公式进行简单的计算;了解(a+b)2=a2+2ab+b2的几何背景。
技能目标:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。
情感与态度目标:通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
3教学重点完全平方公式的准确应用。
4教学难点掌握公式中字母表达式的意义及灵活运用公式进行计算。
5教育理念和教学方式
教学是师生交往、积极互动、共同发展的过程。教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,通过恰当的教学方式引导学生学会自我调适,自我选择。
学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
采用“问题情景-探究交流-得出结论-强化训练”的模式展开教学。充分利用动手实践的机会,尽可能增加教学过程的趣味性,强调学生的动手操作和主动参与,通过丰富多彩的集体讨论、小组活动,以合作学习促进自主探究。
6具体教学过程设计如下:
提出问题:[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?
(x+3)2=,(x-3)2=,
这些式子的左边和右边有什么规律?再做几个试一试:
(2m+3n)2=,(2m-3n)2=
分析问题
6.[学生回答] 分组交流、讨论 多项式的结构特点
(1)原式的特点。两数和的平方。
(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
6.[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
6.、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.
运用公式,解决问题
.1口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=, (m-n)2=,
(-m+n)2=, (-m-n)2=,
.2小试牛刀
①(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
学生小结:你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
[作业]P34随堂练习P36习题
7课后反思:
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备
初中数学教学教案 篇3
[摘要]“学然后知不足教然后知困。知不足然后能自反也,知困,然后能自强也”。在当前轰轰烈烈的课改中,如何培养学生的反思习惯和加强反思教师自己的教学行为,是笔者今天和教育同仁共同探讨的话题。本文主要阐述了对初中数学教学的反思。
[关键词]初中数学,教学反思
一、培养学生对“学”的反思
1.要求作好课堂摘记,作业反思,考试分析等。课堂摘记给学生提供了反思的依据,使其学习活动有了目标。在作业中认真反思,尤其在教师批改之后,要求学生分析自己的解题情况,写下自己的成功之处和不足之处。每次考试之后总结自己的阶段性成果,为自己以后的学习定下新思路和新目标。
2.指导学生如何反思。课堂教学是学生开展反思的主阵地。在课堂教学中教师应有意识引导学生从多方位多角度进行反思性学习。
①在集体讨论探究中反思,每个学生都以自己的经验为背景来建构对事物的理解,认识相对有限。学生通过集体交流,有利于丰富自己的思考过程;②在分析解题方法中反思,体验优劣,解题中不要满足于解对题目,而要努力寻找解决问题的最佳方案,通过这一评价过程,提高学生思维创造性水平,深化对问题本质的认识。③在回顾问题解决后反思,进一步升华思维。教师应鼓励学生获取知识后反思解决过程,引导他们在思维策略上回顾总结,提炼出应用范围更广的思想。反思所解问题的结论,并在反思中形成新的知识组块。
二、强化教师对“教”的反思
1.备课阶段的反思。备课要常备常新,不可照搬教案,也不可吃老本,依赖多年积累的教学经验。备课时要针对于学生现有的认识水平,针对于现在的教学手段、教具、学具,运用新的教育理念,为自己的课堂教学做好准备。反思与学生互动的每一个细节,反思学生在接受新知会出现的情况。反思实际教学中遇到的意想不到的问题时,教师应采取怎样有效的措施,只有经历了这样的反思过程,才能使教学高质高效进行下去。
2.教学过程的反思。反思学习内容是否得到充分展示,还需补充哪些知识。教学方案是否设计合理,导入是否由学生自己提出新问题。每个学生是否都积极地探索交流新问题,他们是否都适应本节课的教学方法。学生是否真正掌握了本节所学知识,是否采取了合理的检测手段。学生是否在本节课中提出了个性化的主张,是否加深了对题目本质的领悟。学生是否还着浓厚的兴趣开展学习探究,是否闪现了创新的火花。
3.教学之后的反思。教师对教学过程进行反思,及时梳理教学理念、教学方法、学生的表现及教学成果的检测。教师总结课堂教学的得与失,写出反思笔记,反思整个教学流程,教学目的是否达到,学生是否学会、是否会学、是否体会、感悟,升华了所学知识。
总之,只有学会教学反思,我们才会逐步完善自己的教学艺术。只有把教学反思落到实处,教师才会教学。在自己的教学之路上越走越宽广,学生才会乐学,才会有所感悟,才会不断的成功。
初中数学教学教案 篇4
【教学内容】
苏教版《义务教育课程规范实验教科书 数学》三年级(下册)第92~94页。
【教学目标】
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和考虑体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处置数据的方法,发展统计观念。
3.进一步发展同学的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
【教具、学具准备】
教具:课件、男女生套圈成果图。
学具:每四位同学一副男女生套圈成果学具板。
【教学过程】
一、创设情境,激趣导入。
谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈竞赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!
二、合作探索,解决问题。
(一)两队人数相同,每人套中的个数不同。
屏幕出示第一小组男、女生套圈成果统计图。
提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?
同学回答后教师相机引导并小结。
(二)两队人数不同,每队中每人套中的个数相同。
屏幕出示第二小组男、女生套圈情况统计图。
请同学一起回答是哪个队套得准一些。
提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?
结合媒体演示小结。
(三)两队人数不同,每人套中的个数也不完全相同。
1.提出问题,自主探究。
出示第三小组的套圈成果图(例题),引导比较,得出与第二小组套圈成果图的异同。
小小组四位同学利用学具板探索解决问题的方法,教师巡视。
全班交流比的结果。
指出:其实,象这样移了以后再比,是分别求出了男、女生平均每人套中的个数再去比的。
结合电脑演示教师讲解揭示平均数的含义。
2.提问:你还能用其他方法求出男生平均每人套中了几个吗?女生呢?
指名列式并说说想法。
3.理解平均数的意义。
谈话引导同学观察、比较,加深对平均数意义的理解。
4.小结。
三、巩固深化,拓展应用
1.辨一辨、说一说。
2.移一移、估一估、算一算。
(1)“想想做做”第1题。
(2)“想想做做”第2题。(三条丝带的长度分别改成6厘米、44厘米、13厘米。)
3.想一想,选一选。
四、全课总结
初中数学教学教案 篇5
初中数学教案
教学建议
一、知识结构
二、重点、难点分析
本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.
本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.
三、教法建议
本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.
(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.
(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.
(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.
教学设计示例
一、教学目的1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.
2.注意培养学生归纳、概括能力,以及运算能力.
3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.
二、重点、难点
重点:掌握单项式与单项式相乘的法则.
难点:分清单项式与单项式相乘中,幂的运算法则.
三、教学过程
复习提问:
什么是单项式?什么叫单项式的系数?什么叫单项式的次数?
引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).
新课 看下面的例子:计算
(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).
同学们按以下提问,回答问题:
(1)2x2y·3xy2
①每个单项式是由几个因式构成的,这些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根据乘法结合律重新组合2x2y·3xy2=2·x2·y·3·x·y2
③根据乘法交换律变更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根据乘法结合律重新组合2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根据有理数乘法和同底数幂的乘法法则得出结论
2x2y·3xy2=6x3y3
按以上的分析,写出(2)的计算步骤:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题. 例1 计算以下各题:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1)4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2)(-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3)(-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4)(4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 计算以下各题(让学生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3)(-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
=[(-3)·(-1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.
初中数学教学教案 篇6
优秀公益广告协议防控了履职任职爱国赏析单词我致辞任职国旗下了履职三字经的致辞作业述职述廉了应急预案赠言!文案祝酒词说明文答案。
初中数学教学教案 篇7
教学目标:
1.会用待定系数法求反比例函数的解析式。
2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。
3.会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。
重点:用待定系数法求反比例函数的解析式。
难点:例3要用科学知识,又要用不等式的知识,学生不易理解。
教学过程:
一。复习
1、反比例函数的定义:
判断下列说法是否正确(对‖√‖,错‖3‖)
(1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正
定时,商和除数成反比例。(5)当被除数(不为零)一
(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。
2、思考:如何确定反比例函数的解析式?
(1)已知y是x的反比例函数,比例系数是3,则函数解析式是
(2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x
二。新课
1.例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x
3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?
3.说一说它们的求法:
(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
4.例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30Ω,通过的电流为,求I关于R的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
三。巩固练习:
1.当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四。拓展:
1.已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:
(1)Y关于x的函数解析式;
(2)当z=-1时,x,y的值。
2.已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的
值都等于10,求y与x之间的函数关系。
五。交流反思
求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?
六、布置作业:P4B组
教学后记:
U由欧姆定律得到。R
初中数学教学教案通用7篇相关文章:
★ 初中语文教案5篇
★ 初中数学教学个人工作总结5篇(初中数学教学工作总结个人)