高一数学集合教案模板共6篇 高中数学集合教案

时间:2022-07-18 07:05:25 教案

  下面是范文网小编整理的高一数学集合教案模板共6篇 高中数学集合教案,供大家参阅。

高一数学集合教案模板共6篇 高中数学集合教案

高一数学集合教案模板共1

  等差数列_高一数学教案_模板

  教学目标

1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;

(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.

2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于等差数列的教学建议 (1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.

⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  等差数列通项公式的教学设计示例 教学目标

1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点

  教学重点是通项公式的认识;教学难点是对公式的灵活运用. 教学用具

  实物投影仪,多媒体软件,电脑.教学方法

  研探式.教学过程 一.复习提问

  前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

  等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用

(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.

(2)已知等差数列 中,首项 , 则公差

(3)已知等差数列 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用

(1)已知等差数列 中,

,求 的值.

(2)已知等差数列 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知等差数列 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中, 求 ; ;

; ;….类似的还有

(4)已知等差数列 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性

,考察 随项数 的变化规律.着重考虑 的情况.此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号

  这是为研究等差数列前 项和的最值所做的准备工作.可配备的题目如

(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

(2)等差数列 从第________项起以后每项均为负数.三.小结

1.用方程思想认识等差数列通项公式;

2.用函数思想解决等差数列问题.四.板书设计

  等差数列通项公式

1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

  二倍角的正弦、余弦、正切(第一课时) (一)教学具准备

  投影仪或多媒体设备 (二)教学目标

  1.掌握、公式的推导,明确 的取值范围.

  2.运用二倍角公式求三角函数值. (三)教学过程 1.设置情境

  师:我们已经学习了两角和与差的正弦、余弦、正切公式,请大家回忆一下这组公式的来龙去脉,并请一个同学把这六个公式写在黑板上,

  生:

  师:很好,对于这些公式大家一方面要从公式的推导上去理解它,另一方面要从公式的结构特点上去记忆,还要注意公式的正用、逆用和变用.今天,我们继续学习二倍角的正弦、余弦和正切公式 2.探索研究

  师:请大家想一想,在公式、中对、如何合理赋值,才能出现、的表达式,并请同学把对应的等式写在黑板上.

  生:可在、中,令 ,就能出现、,对应表达式为:

  即:

  师:很好,看来本节课的主要任务,已经被大家轻松完成了.对于公式 ,我们似乎要注意些什么?大家想一想要关注什么?

  生:要使 有意义及 , 有意义.

  师: 有意义即 , .

,即 ,也就是 ,可变为 .

  要使 有意义,则须 .

  综合起来就是 ,且 , .当 时,虽然 的值不存在,但 的值是存在的,这时求 的值可利用诱导公式,即 .

  师:对于 ,还有没有其他的形式?

  生:有(板书)

∴ 或

  师:(板书三个公式,并告诉学生公式记号分别为、)对二倍角公式大家要注意以下问题.(1)用 和 表示、,用 表示 ,即用单角的三角函数表示复角的三角函数.(2) 有三种形式, 是有条件的. 3.例题分析

【例1】已知 , .求 , , 的值.

  解:因为 , .所以

  于是

  说明:本题也可按下列程序来做,请大家比较方法之优劣.

∵ ,

∴ ,且 ,

【例2】不查表求值:

(1) ;

(2) ;

(3) ;

(4) . 解:(1)

(2)

(3)

(4)

  说明:逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式原形以便合理运用公式. 【例3】 求证:

  引导学生观察式子两边的结构,提出证题的方向.

  生:左边都是单角的三角函数,右边是二倍角.又因左边比右边明显复杂得多,所以应由左边证向右边,注意把单角的三角函数变为二倍角.

  师:(板书) 证明:左边

  右边 所以原式成立

【例4】化简: .

  师:这道题给我们的感觉是有些无从下手,很难看出有什么公式可以直接使用.两个角 与 似乎还有一线希望,但由于受函数名称限制难以发挥它的作用,大家都来想想看,有什么办法可以打破这一僵局(请同学们讨论)?

  生:在同角三角函数的化简中,如果一个式子有弦、有切,我们可以把切化成弦.

  师:好的,我们来尝试(板书)

  解:

  说明:本题在尝试把正切化为弦(正、余弦)后果然获得成功,其实把正切化为弦就是一条重要思想,请同学们切记“遇切、割化弦”这一规律.另外本题的解答过程还反映了逆用和角公式的重要性.希望大家一并记下. 练习(投影) (1)化简 (2)

(3)若 ,则

  答案:(1) ;(2) ;(3)8 4.总结提炼

(1)在两角和的三角函数公式、中,当 时,就可以得到二倍角的三角函数公式、,说明后者是前者的特例.

(2)、中角 没有限制条件,而 中,只有 和 时,才成立.

(3)二倍角公式不仅限于 是 的二倍形式,其他如 是 的2倍, 是 的二倍, 是 的二倍等等都是适用的,要熟悉这些多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键.

  有三种形式 ,要依据条件,灵活选用公式.另外,逆用此公式时,更要注意结构形式. (四)板书设计 二倍角公式

  应注意几个问题: 例1 例2 例3 例4 演练反馈 总结提炼

  对数的运算法则 教学目标

  1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.

  2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.

  3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神. 教学重点,难点

  重点是对数的运算法则及推导和应用

  难点是法则的探究与证明. 教学方法

  引导发现法 教学用具

  投影仪 教学过程

  一.引入新课

  我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.

  如果看到 这个式子会有何联想?

  由学生回答(1) (2) (3) (4) .

  也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则. 二.对数的运算法则(板书)

  对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.

  由学生回答后教师可用投影仪打出让学生看: , , .

  然后直接提出课题:若 是否成立? 由学生讨论并举出实例说明其不成立(如可以举 而 ),教师在肯定结论的正确性的同时再提出

  可提示学生利用刚才的反例,把 5改写成 应为 ,而32=2 ,还可以让学生再找几个例子, .之后让学生大胆说出发现有什么规律?

  由学生回答应有 成立.

  现在它只是一个猜想,要保证其对任意 都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?

  学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.

  证明:设 则 ,由指数运算法则

  得

  即 . (板书)

  法则出来以后,要求学生能 从以下几方面去认识:

(1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).

(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.

(3)若真数是三个正数,结果会怎样?很容易可得 .

(条件同前)

(4)能否利用法则完成下面的运算: 例1:计算

(1) (2) (3)

  由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:

  可由学生说出 .得到大家认可后,再让学生完成证明.

  证明:设 则 ,由指数运算法则得

  教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?

  有的学生可能会提出把 看成 再用法则,但无法解决 计算问题,再引导学生如何回避 的问题.经思考可以得到如下证法

.或证明如下

,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差) 请学生完成下面的计算

(1) (2) .

  计算后再提出刚才没有解决的问题即 并将其一般化改为 学生在说出结论的同时就可给出证明如下:

  设 则

, .教师还可让学生思考是否还有其它证明方法,可在课下研究.

  将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则

(1) 了解法则的由来.(怎么证)

(2) 掌握法则的内容.(用符号语言和文字语言叙述)

(3) 法则使用的条件.(使每一个对数都有意义)

(4) 法则的功能.(要求能正反使用) 三.巩固练习 例2.计算

(1)

(2)

(3)

(4)

(5) (6) 解答略

  对学生的解答进行点评. 例3.已知

,用 的式子表示

(1)

(2)

(3) . 由学生上黑板写出求解过程. 四.小结

  1.运算法则的内容

  2.运算法则的推导与证明

  3.运算法则的使用 五.作业略 六.板书设计

  二.对数运算法则

  例1 例3 1.内容 (1) (2) (3)

  例2 小结 2.证明

3.对法则的认识

(1)条件

(2)功能

  教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题.

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

  教学建议

  教材分析

(1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

(2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

  教学设计示例

  课题:等比数列的概念 教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具

  投影仪,多媒体软件,电脑.教学方法

  讨论、谈话法.教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,,-,…

⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列.(这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书)

1.等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

  用数学式子表示等比数列的定义.

  是等比数列

①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列

?为什么不能?

  式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.等比数列的通项公式(板书)

  问题:用 和 表示第 项 .

①不完全归纳法

.

②叠乘法

,… , ,这 个式子相乘得 ,所以 .(板书)(1)等比数列的通项公式

  得出通项公式后,让学生思考如何认识通项公式.(板书)(2)对公式的认识

  由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

  这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.四、作业(略) 五、板书设计

  三.等比数列 1.等比数列的定义 2.对定义的认识

3.等比数列的通项公式 (1)公式

(2)对公式的认识

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为毫米.参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(用对数算也行).

高一数学集合教案模板共2

  数学教案-三角函数第一课时_高一数学教案_模板

  第四章

  三角函数 第一教时

  教材:角的概念的推广 目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

  过程:一、提出课题:“三角函数”

  回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。 二、角的概念的推广

  1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘” 2.讲解:“旋转”形成角(P4)

  突出“旋转” 注意:“顶点”“始边”“终边” “始边”往往合于 轴正半轴

  3.“正角”与“负角”——这是由旋转的方向所决定的。 记法:角 或

  可以简记成

  4.由于用“旋转”定义角之后,角的范围大大地扩大了。 1° 角有正负之分

  如:a=210° b=-150° g=-660° 2° 角可以任意大

  实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°) 3° 还有零角 一条射线,没有旋转 三、关于“象限角”

  为了研究方便,我们往往在平面直角坐标系中来讨论角

  角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角 585° 1180°是第Ⅲ象限角 -2000°是第Ⅱ象限角等 四、关于终边相同的角

  1.观察:390°,-330°角,它们的终边都与30°角的终边相同 2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和

  390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

-1770°=30°-5×360°

  3.所有与a终边相同的角连同a在内可以构成一个集合

  即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和 4.例一 (P5 略) 五、小结: 1° 角的概念的推广 用“旋转”定义角 角的范围的扩大 2°“象限角”与“终边相同的角” 六、作业: P7 练习1、2、3、4 习题 1

  同角三角函数的基本关系式 教学目标:

  1.掌握同角三角函数之间的三组常用关系,平方关系、商数关系、倒数关系.

  2.会运用同角三角函数之间的关系求三角函数值或化简三角式. 教学重点:

  理解并掌握同角三角函数关系式. 教学难点:

  已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;

  教学用具:

  直尺、投影仪. 教学步骤:

  1.设置情境

  与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 2.探索研究

(1)复习任意角三角函数定义

  上节课我们已学习了任意角三角函数定义,如图1所示,任意角 的六个三角函数是如何定义的呢?

  在 的终边上任取一点 ,它与原点的距离是 ,则角 的六个三角函数的值是:

(2)推导同角三角函数关系式

  观察 及 ,当 时,有何关系?

  当 且 时、及 有没有商数关系?

  通过计算发现 与 互为倒数:∵ .

  由于 ,

  这些三角函数中还存在平方关系,请计算 的值.

  由三角函数定义我们可以看到:

∴ ,现在我们将同角三角函数的基本关系式总结如下:

①平方关系:

②商数关系:

③倒数关系:

  即同一个角 的正弦、余弦的平方和等于1,商等于角 的正切,同一个角的正切、余切之积等于1(即同一个角的正切、余切互为倒数).上面这三个关系式,我们称之为恒等式,即当 取使关系式两边都有意义的任意值时,关系式两边的值相等,在第二个式中, 在第三个式中, 的终边不在坐标轴上,这时式中两边都有意义,以后解题时,如果没有特别说明,一般都把关系式看成是意义的.其次,在利用同角三角函数的基本关系式时,要注意其前提“同角”的条件.

(3)同角三角函数关系式的应用

  同角三角函数关系式十分重要,应用广泛,其中一个重要应用是根据一个角的某一个三角函数,求出这个角的其他三角函数值.

【例1】已知 ,且 是第二象限角,求 , , 的值. 解:∵ ,且 ,∴ 是第二或第三象限角.

  如果 是第二象限角,那么

  如果 是第三象限角,那么 ,

  说明:本题没有具体指出 是第几象限的角,则必须由 的函数值决定 可能是哪几象限的角,再分象限加以讨论.

【例2】已知 ,求 的值.

  解: ,且 , 是第二或第三象限角.

  如果 是第二象限角,那么

  如果 是第三象限角,那么 .

  说明:本题没有具体指出 是第几象限角,则必须由 的函数值决定 可能是哪几象限的角,再分象限加以讨论.

【例3】已知 为非零实数,用 表示 , .

  解:因为 ,所以

  又因为 ,所以

  于是 ∴

  由 为非零实数,可知角 的终边不在坐标轴上,考虑 的符号分第一、第四象限及第二、三象限,从而:

  在三角求值过程中应尽量避免开方运算,在不可避免时,先计算与已知函数有平方关系的三角函数,这样可只进行一次开方运算,并可只进行一次符号说明.

  同角三角函数关系式还经常用于化简三角函数式,请看例4

【例4】化简下列各式:

(1) ;(2) .

  解:(1) (2)

3.演练反馈(投影)

(1)已知: ,求 的其他各三角函数值. (2)已知 ,求 , . (3)化简:

  解答:(1)解:∵ ,所以 是第二、第三象限的角.

  如果 是第二象限的角,则:

  又

  如果 是第三象限的角,那么

(2)解:∵

∴ 是第二或第四象限的角 由【例3】的求法可知当 是第二象限时

  当 是第四象限时

(3)解:原式

  4.本课小结

(1)同角三角函数的三组关系式的前提是“同角”,因此 , …….

(2)诸如 , ,……它们都是条件等式,即它们成立的前提是表达式有意义.

(3)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论. 课时作业:

  1.已知 , ,则 等于( )

  A.

  B. C.

  D.

  2.若 ,则 的值是( )

  A.-2 B.2 C.±2 D.

  3.化简

  4.化简 ,其中 为第二象限角. 5.已知 ,求 的值.

  6.已知 是三角形的内角, ,求 值.

  参考答案:1.D; 2.B; 3.1; 4. ; 5.3; 6.

  注:4.略解:原式

∵ 在第二象限

∴ . 6.略解:

  由 ,平方得, ,

∵ 是三角形内角

∴只有

∴ ,

  由

  及 ,联立,得: , ,

  教学目标

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以转化为一元一次不等式组;

(3)了解简单的分式不等式的解法;

(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观. 教学重点:一元二次不等式的解法;

  教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系. 教与学过程设计 第一课时 Ⅰ.设置情境 问题: ①解方程

②作函数 的图像 ③解不等式

【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

  通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

  在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢? Ⅱ.探索与研究

  我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。) 【答】方程 的解集为

  不等式 的解集为

【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答) 【答】不等式 的解集为

  我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

  下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

  如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

  现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

【答】 的解集依次是

  的解集依次是

  它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

  课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

(教师巡视,重点关注程度稍差的同学。)

Ⅲ.演练反馈

  1.解下列不等式:

(1)

(2)

(3)

(4)

  2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

  3.解不等式

(1)

(2)

  参考答案:

  1.(1) ;(2) ;(3) ;(4)R

  2.

  3.(1)

(2)当 或 时, ,当 时,

  当 或 时, 。 Ⅳ.总结提炼

  这节课我们学习了二次项系数 的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

(五)、课时作业

(P20.练习等3、4两题)

(六)、板书设计

  第二课时

Ⅰ.设置情境

(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

  上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

Ⅱ.探索研究

(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

  生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

  生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

  师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

(待学生阅读完毕,教师再简要讲解一遍.) [知识运用与解题研究]

  由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

  解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

(1)

(2)

(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

  训练二 可化为一元一次不等式组来求解的不等式.

  目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

  这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

(1)

[P20练习中第1大题]

(2)

[P20练习中第1大题]

(3)

[P20练习中第2大题]

(老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

  例5 解不等式

  因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

  解:(略)

  现在请同学们完成课本P21练习中第3、4两大题。

(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

[训练三]用“符号法则”解不等式的复式训练。

(通过多媒体或其他载体给出下列各题)

  1.不等式 与 的解集相同此说法对吗?为什么[补充]

  2.解下列不等式:

(1) [课本P22第8大题(2)小题]

(2)

[补充]

(3)

[课本P43第4大题(1)小题]

(4) [课本P43第5大题(1)小题]

(5) [补充]

(每题均先由学生说出解题思路,教师扼要板书求解过程)

  参考答案:

  1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

  2.(1)

(2)原不等式可化为: ,即

  解集为 。

(3)原不等式可化为

  解集为

(4)原不等式可化为 或

  解集为

(5)原不等式可化为: 或 解集为

Ⅲ.总结提炼

  这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。 (五)布置作业

(P22.2(2)、(4);4;5;6。) (六)板书设计

  教学目标

1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;

(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.

2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

  关于等差数列的教学建议 (1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.

⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

  等差数列通项公式的教学设计示例 教学目标

1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点

  教学重点是通项公式的认识;教学难点是对公式的灵活运用. 教学用具

  实物投影仪,多媒体软件,电脑.教学方法

  研探式.教学过程 一.复习提问

  前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

  等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计

  通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用

(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.

(2)已知等差数列 中,首项 , 则公差

(3)已知等差数列 中,公差 , 则首项

  这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用

(1)已知等差数列 中,

,求 的值.

(2)已知等差数列 中, , 求 .

  若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.

  教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).

  如:已知等差数列 中, …

  由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中, 求 ; ;

; ;….类似的还有

(4)已知等差数列 中, 求 的值.

  以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性

,考察 随项数 的变化规律.着重考虑 的情况.此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号

  这是为研究等差数列前 项和的最值所做的准备工作.可配备的题目如

(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?

(2)等差数列 从第________项起以后每项均为负数.三.小结

1.用方程思想认识等差数列通项公式;

2.用函数思想解决等差数列问题.四.板书设计

  等差数列通项公式

1.方程思想的运用

2.基本量方法的使用

3.研究等差数列的单调性

4.研究项的符号

高一数学集合教案模板共3

  高中数学教案:高一数学《集合》教案模板

一、知识结构

  本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子. 二、重点难点分析

  这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法. 1.关于牵头图和引言分析

  章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明集合和简易逻辑知识是高中数学重要的基础. 2.关于集合的概念分析

  点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.

  第 1 页 初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.

  我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界. 3.关于自然数集的分析

  教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.

  集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合. 5.要辩证理解集合和元素这两个概念

(1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如 (3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件. 6.表示集合的方法所依据的国家标准

  第 2 页 本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定.

  第 3 页

高一数学集合教案模板共4

  数列 -数学教案

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数 的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 表示 的问题是重点问题,可先提出一个具体问题让学生分析 与 的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调 的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  教学设计示例

  数列的概念

  教学目标

  1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.

  2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.

  3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.

  教学重点,难点

  教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.

  教学用具:电脑, 象这样排好队的数就是我们的研究对象——数列.

(板书)第三章 数列

(一)数列的概念

  二.讲解新课

  要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

(幻灯片) ①

  自然数排成一列数:

  3个1排成一列:

  无数个1排成一列:

  的不足近似值,分别近似到 排列起来:

  正整数 的倒数排成一列数:

  函数 当 依次取 时得到一列数:

  函数 当 依次取 时得到一列数:

  请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.

(板书)1.数列的定义:按一定次序排成的一列数叫做数列.

  为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.

  由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,??,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.

(板书)2.数列与函数的关系

  数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集 ,或是正整数集 的有限子集 .

  于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.

  遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.

(板书)3.数列的表示法

  数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,??,用 表示第 项,依次写出成为

(板书)(1)列举法

.(如幻灯片上的例子)简记为 .

  一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.

(板书)(2)图示法

  启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.

  有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即 ,这个函数式叫做数列的通项公式.

(板书)(3)通项公式法

  如数列 的通项公式为 ;

  的通项公式为 ;

  的通项公式为 ;

  数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.

高一数学集合教案模板共5

  教案一般包括教学内容、教学目标及教学过程,那么 ,下面是小编给大家整理收集的高一数学教案设计,供大家阅读参考。

  高一数学教案设计一:集合的概念

  教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

1、集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

  教学过程:

一、复习引入:

1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2、教材中的章头引言;

3、集合论的创始人——康托尔(德国数学家)(见附录);

4、“物以类聚”,“人以群分”;

5、教材中例子(P4)

二、讲解新课:

  阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合、

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N*或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习

1、

22、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,

5、(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,又∵ 不一定都是整数,∴ = 不一定属于集合G

四、小结:本节课学习了以下内容:

1、集合的有关概念:(集合、元素、属于、不属于)

2、集合元素的性质:确定性,互异性,无序性

3、常用数集的定义及记法

  高一数学教案设计二:函数的概念

【内容与解析】

  本节课要学的内容有函数的概念指的是函数的概念及符号 的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。

【教学目标与解析】

1、教学目标

(1)理解函数的概念;

(2)了解区间的概念;

2、目标解析

(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号 的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

【教学过程】

  问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是: h= 这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?

高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?

  设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。

  问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。

  问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

  设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

  问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?

在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?

在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?

一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?

【例题】:

  例1 求下列函数的定义域

(1) (2)

(3) (4)

  分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!

  例2已知函数

  分析:理解函数f(x)的意义

  例3 下列函数中哪个与函数 相等?

  例4 在下列各组函数中 与 是否相等?为什么?

  分析:(1)两个函数相等,要求定义域和对应关系都一致;

(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.【课堂目标检1测】

  教科书第19页

1、2.

【课堂小结】

1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;

2、理解区间是表示数集的一种方法,会把不等式转化为区间。

高一数学集合教案模板共6

  数学教案-数列_高一数学教案_模板

数列

  教学目标

  1.理解数列概念,了解数列和函数之间的关系

  2.了解数列的通项公式,并会用通项公式写出数列的任意一项

  3.对于比较简单的数列,会根据其前几项写出它的个通项公式

  4.提高观察、抽象的能力.

  教学重点

  1.理解数列概念;

  2.用通项公式写出数列的任意一项.

  教学难点

  根据一些数列的前几项抽象、归纳数列的通项公式. 教学方法

  发现式教学法

  教具准备

  投影片l张(内容见下页) 教学过程

(1)复习回顾

  师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一

  下函数的定义.

  生:(齐声回答函数定义).

  师:函数定义(板书) 如果A、B都是非空擞 集,那么A到B的映射 就叫做A到B的函数,记作: ,其中

(Ⅱ)讲授新课

  师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)

  4,5,6,7,8,9,10.① ②

  1,,,,…. ③ 1,,,,4,…. ④ -1,1,-1,1,-1,1,…. ⑤ 2,2,2,2,2,

  师:观察这些例子,看它们有何共同特点? (启发学生发现数列定义)

  生:归纳、总结上述例子共同特点: 1. 均是一列数; 2. 有一定次序

  师:引出数列及有关定义 一、定义

  1. 数列:按一定次序排列的一列数叫做数列; 2. 项:数列中的每一个数都叫做这个数列的项。 各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。

  如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。

  3. 数列的一般形式: ,或简记为 ,其中 是数列的第n项 生:综合上述例子,理解数列及项定义

  如:例②中,这是一个数列,它的首项是“1”,“ ”是这个数列的第“3”项,等等。 师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项

↓ ↓ ↓ ↓ ↓

  序号 1 2 3 4 5 师:看来,这个数的第一项与这一项的序号可用一个公式: 来表示其对应关系 即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项 生:结合上述其他例子,练习找其对应关系 如:数列①: =n+3(1≤n≤7) 数列③: ≥1) 数列⑤: n≥1)

  4.通项公式:如果数列 的第n项 与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

  师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集 的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。

  师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。 生:根据扭注通项公式画出数列①,②的图象,并总结其特点。

  图3—1 特点:它们都是一群弧立的点 5.有穷数列:项数有限的数列 6.无穷数列:项数无限的数列 二、例题讲解

  例1:根据下面数列 的通项公式,写出前5项: (1)

  师:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项。 解:(1)

(2)

  例2:写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)1,3,5,7; (2)

(3) 分析:

(1)项1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1 ↓ ↓ ↓ ↓

  序号 1 2 3 4 ∴ ;

(2)序号:1 2 3 4 ↓ ↓ ↓ ↓

  项分母:2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓

  项分子: 22-1 32-1 42-1 52-1 ∴ ;

(3)序号

‖ ‖ ‖ ‖

(Ⅲ)课堂练习

  生:思考课本P112练习1,2,3,4 师:[提问]练习3,4,并根据学生回答评析 生:板演练习1,2 (Ⅳ)课时小结

  师:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。 (V)课后作业

一、课本P114习题 1,2 二、1.预习内容:课本P112~P13 预习提纲:①什么叫数列的递推公式? ②递推公式与通项公式有什么异同点? 板书设计

  课题 一、定义 1. 数列 2. 项

  3. 一般形式 4. 通项公式 5. 有穷数列 6. 无穷数列 二、例题讲解 例1

  例2 函数定义 教学后记 §数列

  教学目标

  1.了解数列的递推公式,明确递推公式与通项公式的异同

  2.会根据数列的递推公式写出数列的前几项

  3.培养学生推理能力.

  教学重点

  根据数列的递推公式写出数列的前几项

  教学难点

  理解递推公式与通项公式的关系

  教学方法

  启发引导法

  教具准备

  投影片1张(内容见下页) 教学过程

(I)复习回顾

  师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容.

  师:[提问]上节课我们学习了哪些主要内容?

  生:[回答]数列、项、表示形式、通项公式、数列分类等等.

(Ⅱ)讲授新课

  师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题.

  下面同学们来看此图:钢管堆放示意图(投影片).

  生:观察图片,寻其规律,建立数学模型.

  模型一:自上而下:

  第1层钢管数为4;即:1 4=1+3 第2层钢管数为5;即:2 5=2+3 第3层钢管数为6;即:3 6=3+3 第4层钢管数为7;即:4 7=4+3 第5层钢管数为8;即:5 8=5+3 第6层钢管数为9;即:6 9=6+3 第7层钢管数为10;即:7 10=7+3 若用 表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且 ≤n≤7)

  师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。 师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二) 生:自上而下每一层的钢管数都比上一层钢管数多1。 即

  依此类推: (2≤n≤7)

  师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。 一、定义:

  递推公式:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 说明:递推公式也是给出数列的一种方法。 二、例题讲解

  例1:已知数列 的第1项是1,以后的各项由公式 给出,写出这个数列的前5项。 分析:题中已给出 的第1项即

  递推公式:

  解:据题意可知:

  例2:已知数列 中, ≥3) 试写出数列的前4项 解:由已知得

(Ⅲ)课堂练习

  生:课本P113练习 1,2,3(书面练习)

(板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。 (1) ≥2) (2) ≥3)

  师:给出答案,结合学生所做进行评析。 (Ⅳ)课时小结

  师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于:

  1. 通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。

  2. 对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。 (V) 课后作业 一、课本P114习题 3,4 二、1.预习内容:课本P114—P116 3. 预习提纲:①什么是等差数列?②等差数列通项公式的求法? 板书设计

  课题 一、定义

  1. 递推公式: 三、例题讲解 例1 例2 小结: 通项公式与 递推公式区别

  教学后记

一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解逻辑联结词“或”“且”“非”的含义;

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能. 二、教学重点难点:

  重点是判断复合命题真假的方法;难点是对“或”的含义的理解. 三、教学过程 1.新课导入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.) 学生举例:平行四边形的对角线互相平. ……(1) 两直线平行,同位角相等.…………(2)

  教师提问:“……相等的角是对顶角”是不是命题?……(3) (同学议论结果,答案是肯定的.) 教师提问:什么是命题? (学生进行回忆、思考.)

  概念总结:对一件事情作出了判断的语句叫做命题. (教师肯定了同学的回答,并作板书.)

  由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

  例1 判断以下各语句是不是命题,若是,判断其真假:

  命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题. 初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

  2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

  可以判断真假的语句叫做命题.

  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

  对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.

  对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.

  对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .

  命题可分为简单命题和复合命题.

  不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用 , , , ,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

  我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 “、“若 则 ”等形式.

  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

  对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .

  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

  3.巩固新课

  例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1) ;

(2)非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若 ,则 .

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

  例3 写出下表中各给定语的否定语(用课件打出来). 若给定语为 等于 大于 是 都是

  至多有一个 至少有一个 至多有 个

  其否定语分别为

  分析:“等于”的否定语是“不等于”;

“大于”的否定语是“小于或者等于”;

“是”的否定语是“不是”;

“都是”的否定语是“不都是”;

“至多有一个”的否定语是“至少有两个”;

“至少有一个”的否定语是“一个都没有”;

“至多有 个”的否定语是“至少有 个”. (如果时间宽裕,可让学生讨论后得出结论.)

  置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)

  4.课堂练习:第26页练习1,2.

  5.课外作业:第29页习题 1,2.

  教学目标

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

  教学建议 教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

  教学设计示例对数函数 教学目标

1.在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2.通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3.通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性. 教学重点,难点

  重点是理解对数函数的定义,掌握图像和性质.

  难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质. 教学方法

  启发研讨式 教学用具

  投影仪 教学过程 一.引入新课

  今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  提问:什么是指数函数?指数函数存在反函数吗?

  由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程: 由 得 .又

  的值域为 ,

  所求反函数为

  那么我们今天就是研究指数函数的反函数---对数函数. 2.8对数函数 (板书) 一.对数函数的概念

1.定义:函数 的反函数 叫做对数函数.

  由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

  教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

  在此基础上,我们将一起来研究对数函数的图像与性质. 二.对数函数的图像与性质 (板书)

1.作图方法

  提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

  由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

  和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2.草图.

  教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明) 3.性质

(1) 定义域:

(2) 值域:

  由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用. 三.简单应用 (板书) 1.研究相关函数的性质

  例1.求下列函数的定义域:

(1) (2) (3)

  先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制. 2.利用单调性比较大小 (板书) 例2.比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 ; (4) 与 .

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程. 三.巩固练习 练习:若 ,求 的取值范围. 四.小结 五.作业 略 板书设计

  2.8对数函数

  一.概念

  1. 定义

  2.认识

  二.图像与性质

  1.作图方法

  2.草图

  图1 图2

  3.性质

(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性 三.应用

  1.相关函数的研究

  例1 例2

  练习

  探究活动

(1) 已知 是函数 的反函数,且 都有意义.

① 求 ;

② 试比较 与4 的大小,并说明理由.

(2) 设常数 则当 满足什么关系时, 的解集为

  答案: (1) ① ;

②当

  时,

(2) .

  教学目标

1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

(3)通过通项公式认识等比数列的性质,能解决某些实际问题.

2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

  教学建议

  教材分析

(1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

(2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议

(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法.启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

  教学设计示例

  课题:等比数列的概念 教学目标

1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.

3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具

  投影仪,多媒体软件,电脑.教学方法

  讨论、谈话法.教学过程 一、提出问题

  给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,,-,…

⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列.(这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书)

1.等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

2.对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即 ;

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0.

  用数学式子表示等比数列的定义.

  是等比数列

①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列

?为什么不能?

  式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

3.等比数列的通项公式(板书)

  问题:用 和 表示第 项 .

①不完全归纳法

.

②叠乘法

,… , ,这 个式子相乘得 ,所以 .(板书)(1)等比数列的通项公式

  得出通项公式后,让学生思考如何认识通项公式.(板书)(2)对公式的认识

  由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

  这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.三、小结

1.本节课研究了等比数列的概念,得到了通项公式;

2.注意在研究内容与方法上要与等差数列相类比;

3.用方程的思想认识通项公式,并加以应用.四、作业(略) 五、板书设计

  三.等比数列 1.等比数列的定义 2.对定义的认识

3.等比数列的通项公式 (1)公式

(2)对公式的认识

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为毫米.参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度.如果纸再薄一些,比如纸厚毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(用对数算也行).

高一数学集合教案模板共6篇 高中数学集合教案相关文章:


相关热词搜索:高一数学集合教案模板