下面是范文网小编收集的一位数除三位数商是两位数且有余数教学反思4篇 三位数除以一位数,商是两位数教学反思,以供参考。
一位数除三位数商是两位数且有余数教学反思1
上学期教学两位数除以一位数时,结合着可操作的实物情境(羽毛球),算理讲得很充分很透彻,学生也的确做到了“知其然也知其所以然”,唯一可惜的是并未脱离情境从计数单位的角度来引导学生理解算理。
本学期第一课三位数除以一位数(商是三位数)的教学却让我犯了难:竖式计算的算理教还是不教?怎么教?从教材和教学用书看,似乎以迁移两位数除以一位数的算法为主,并不需要算理的支撑(仅解决商的最高位问题),但如此一来,又如何跟学生解释“除完百位只把十位移下来除而不要连个位一起移”之类的问题?学生在尝试计算和巩固练习中可都出现了这样的问题。
看来还是要讲一讲道理的,可道理又该如何讲?再借助实物情境是不可能了,没有这样的情景可用。那就只能从计数单位的角度来讲了,可这样高度抽象的`算理在具体教学时是一带而过,还是花大力气细讲?又有多少学生能接受,又有多少学生能记住?这里是个大大的问号。
思之再三,课上还是没敢“讲道理”。通过估算,学生确定了商的最高位。然后就放手让他们自己利用旧有经验试着写完竖式,巡视中我果然发现了不少学生出现了十位个位一起移下来除的情况。交流时先让正确的学生详细介绍了计算过程,随后我举出了发现的这一问题,问:一起移下来后方便继续除下去吗?在正、反例的对比下,学生知道了:要一位一位往下除。但他们的所谓知道也仅是知道表面上的原因而已,个中的真正原因是不清楚的。接着就与复习中的两位数除以一位数竖式进行求同比较,粗略的概括了这么几条:从最高位除起;一位一位除;有余数要和后一位合起来再除;除到个位才能结束。
总体来看,浮于表面的迁移、简单的模仿、机械的演练————这就是孩子们今天所经历的。虽然由于知识本身的难度不大,加之旧知较扎实,他们还是较快且较熟练的掌握了三位数除以一位数的方法。但,他们的收获也仅限于技能层面了。缺乏了理解,学生们还能将今天的笔算方法内化到他们的认知结构中去吗?新旧知识之间缺失了内在的有机联系,学生们还能建构起关于笔算除法的雏形系统吗?
一位数除三位数商是两位数且有余数教学反思2
今天开学第一天,而第一天就被随堂听课,运气真是很好,幸好昨天做了认真的准备,所以不算很慌张,但是课上出现了很多我没有预设到的问题,上着上着我却是越来越慌张,最后除数被除数都不分了。
三位数除以一位数的除法由于有两位数除以一位数的基础,所以我觉得应该不会很难,所以在例题986除以2的竖式计算那里,黑板上提示到百位上商4,就放手让学生自己探索下面的算法了,但是三位数的被除数让学生无从下手,本该是一位一位往下挪的数字,有的孩子一起挪到下面来,或者是百位上有余数却没有移下来,有的数位也没有对齐就乱移一通,我自己在解释的时候也乱,后来想清楚了,觉得自己挺悲剧的。
首先,大部分学生都知道除法应从最高位除起,这个地方点到为止。
然后弄清百位上的被除数是几,百位上有没有余数,余到十位上加上十位上的数字共同成为十位上的被除数,接着除,再看十位上有没有余数,余到个位上加上个位上的数字共同成为另一个被除数,接着除,个位上还有与余数的就余下来作为商的余数,这样讲条理会清楚一些,学生接受起来,模仿起来也容易上手。
其次,对除法法则的渗透还要加强。我自己是在不知不觉中运用了除法法则,但是没有明确的说出来,造成了人为的障碍。最典型的错误就是余数会比除数大,光看算式很容易发现余数不应该比除数大,但是在计算的过程中就经常出现,问题大多出在试商的环节,口诀不熟,慢,一慢一不熟就容易让思维停滞,一旦停滞就不能考虑周到,往往乘法好不容易嘀咕出来是多少了,写出来一减余数还老大的.,所以下面要练习学生的试商,简单点就直接练习乘法的口诀。
这节课我是想有一个尝试的,就是以最简答的小组合作的形式——同桌合作,来完成练习部分的锻炼。因为两个人能形成最简单的合作,并且两个人的合作有多人合作没有的优势,就是在两人合作中每个人都必须参与其中,每个人都是发言者和倾听者,每个人必须更专心的记录或发言,而合作意味着对话的开始,对话是思维的外衣,是两个人平等的展现自己的思想,哪怕是最浅显的,也给进一步的思考提供了自信的源泉。前面两人合作口算问题不大,后面的笔算出现了各种各样的问题,打乱了我的教学预设,很多该小组完成的作业被延误了。
所以,计算教学需要思考的还很多,现在我越来越觉得教的过程可以不完美可以琐碎,但要条理清楚,要让人容易上手,上完学生都会做作业那就是最实在的奖励。
一位数除三位数商是两位数且有余数教学反思3
在探索一位数除三位数(首位能整除)的`口算方法时由于部分学生应能应用已有知识计算出结果,为让每一位学生都能进一步理解算理,我主要通过让学生摆小棒来理解。使学生通过动手操作,在操作过程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。
所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解“形”和“数”之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
一位数除三位数商是两位数且有余数教学反思4
上完这节课,让学生判断出发算式商是几位数,在例题中,学生根据观察被除数312的第一位数比除数4小,应该用被除数的前两位数除以4,很容易判断出312÷4的商是几位数,通过提问“7为什么写在商的十位上”,学生在交流中体会到“除数是一位数的除法,当被除数的.最高位不够商1时,就要用它的前两位去除,除到被除数的哪一位,就把商写在哪一位的上面”进一步巩固算理。本节课中,通过例题于复习题进行比较,这样在比较中学生比较容易理解商是三位数还是两位数的除法,关键是商的定位,此外,课堂中要重视估算,培养估算意识。
学生在巩固练习,家庭作业的完成过程中,大多数学生左右为情况完成比较好,竖式格式较为规范,个别学生在写横式时漏写余数,或者是漏写横式答案。让学生进行估算得数是几位数,或者是让学生估算得数是几十多,几百多,可以提高学生的估算能力和正确率,练习中还出现了一些乘法的习题,培养学生的注意品质,让学生在计算时养成良好的学习习惯,如计算时把数字看清楚,竖式的数位对齐,养成计算完要验算的好习惯,培养计算时要细心,耐心,用心的好习惯。
一位数除三位数商是两位数且有余数教学反思4篇 三位数除以一位数,商是两位数教学反思相关文章: