数学《因数与倍数》教学设计精华7篇

时间:2023-10-28 22:21:53 教学设计

数学《因数与倍数》教学设计 篇1

《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。

  一、领会意图,做到用教材教。

  我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。

  但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!

  二、模式运用,做到灵活自然。

  模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。

  如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!

数学《因数与倍数》教学设计 篇2

《因数和倍数》是一节数学概念课,在以往的教材中,都是通过除法算式来引出整除的概念,而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。对于学生来说是比较难掌握的内容。尤其对因数和倍数是一对相互依存的概念,不能单独存在,不是很好理解。我通过生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。所以在上课之前我特意举一些生活中的实例来帮助学生对相互依存的理解,在描述因数和倍数的概念时就不会说错了。对于这节课的教学,我特别注意下面几个细节来帮助学生理解因数和倍数的概念。

  1、是我上课时特别注意让学生明白什么情况下才能讨论因数和倍数的概念。

  2、是要学生注意区分乘法算式中的"因数"和本单元中的"因数"的联系和区别。在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对"积"而言的,与"乘数"同义,可以是小数,而后者是相对于"倍数"而言的,两者都只能是整数。

  3、是要注意区分"倍数"与前面学过的"倍"的联系和区别。"倍"的概念比"倍数"要广。可以说"15是3的倍数",也可以说"是的5倍",但我们只能说"15是3的倍数",却不能说"是0.的倍数"。在课堂中反复强调,帮助学生认真理解辨析,所以学生一节课下来对这组概念就理解透彻了,就不会模糊了。

数学《因数与倍数》教学设计 篇3

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

  教学目标:

  1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

  2.使学生经历探索求一个数的因数或倍数的`方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

  3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

  教学重点:

  认识因数和倍数。

  教学难点:

  求一个数的因数、倍数的方法。

  教学准备:

  小黑板、准备12个同样大的正方形学具。

  教学过程:

  一、操作引入,认识意义

  1.操作交流。

  引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

  交流:你有哪些拼法?请你说一说,并交流你表示的算式。

  结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

  2.认识意义。

  (1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

  (2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

  (3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。

数学《因数与倍数》教学设计 篇4

  教学内容

  教材第17页、18页内容。

  教学目标

  知识目标

  1.使学生初步掌握2、5的倍数的特征。

  2.使学生知道奇数、偶数的概念。

  能力目标

  1.会判断一个数是否能被2、5整除。

  2.会判断奇数、偶数。

  3.培养类推能力及主动获取知识的能力。

  情感目标

  激发学生的学习兴趣。

  教学重点

  掌握2、5的倍数的特征及奇数、偶数的概念。

  教学难点

  灵活运用2、5的倍数的特征及奇数、偶数的概念进行综合判断。

  教学过程

  一、激趣引入 走进课堂

  1.前面我们学习了自然数、整数、因数,后来又学习了倍数,我们都说自己学的很棒,今天我就考考大家

  出示:1~100的自然数。

  2.导入:

  这是1~100的自然数。

  你能很快找出2的所有倍数吗,并用蓝笔圈出来。试一试!

  3.同桌结组,比试结果。

  二、探究新知

  1.2的倍数的特征。

  你们圈出的这些数和2有什么联系

  为什么它们都是2的倍数

  这些数是分别用2X1 2X2 2X3 2X4 2X5 ……得来的

  请大家观察这些数,你发现这些数有什么特征?

  这些数个位上是0、2、4、6、8中的.一个。

  这个规律正确吗?请同学们任写一些大一点的数验证一下。(学生写数验证,小组内讨论)

  学生汇报,师生共同总结:看来判断一个数是不是2的倍数,只要看这个数的个数是不是0、2、4、6、8就可以了。

  三、练习 出示课本第20页第一题

  自学 奇数、偶数

  1、关于一个数是不是2的倍数,还有很多知识,你想知道吗?请你打开课本第17页自学。

  你们从书上还知道了些什么?

  自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

  0也是偶数。(因为0也是2的倍数,所以也是偶数)

  双数指的就是偶数,那么单数指什么呢?

  学生说:奇数

  2、巩固练习 出示课本第17页做一做

  学生口答

  根据上面的学习,你们还能想到哪些数学知识呢?

  自然数根据是不是2的倍数,可分为奇数和偶数。

  因为0、2、4、6、8都是偶数,所以也可以说“个位上是偶数的数都是偶数”。

  3、联系生活

  在生活中,你在哪儿还见过奇数和偶数?

  我的身高148厘米,148就是一个偶数

  2008是个偶数

  同学们真有心,在我们的生活中经常用奇数、偶数对事物进行分类。

  看来奇数、偶数给我们的学习、生活带来不少方便呢。

  2、5的倍数的特征。

  自主探索5的倍数的特征。

  在课本上有100以内数的表格,请同学们打开书,找出5的倍数,看看有什么规律,和你的同桌说一说,并想办法验证你所发现的规律。

  师生共同总结:个位上是0或5的数,是5的倍数。

  3、既是2的倍数,又是5的倍数的数的特征

  判断:下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2又是5的倍数?(60 30)

  60、75、106,30,521

  ①引导学生思考:一个数既是2的倍数又是5的倍数,这个数有什么特征?

  ②汇报结果:说说你是怎样判断的?

  ③引导总结:个位上为0的数既是2的倍数又是5的倍数。

  三、巩固发展:

  (1)套圈游戏:把下面的数填在圈里。

  18 24 25 30 35 36 40 42 45 46 50 65 80 100

  ①2的倍数:

  ②5的倍数:

  ③同时是2和5的倍数:

  (2)判断。

  ①一个自然数不是奇数就是偶数。 ( )

  ②能被2除尽的数都是偶数。 ( )

  ③同时是2和5倍数的数,个位上的数字一定是0。 ( )

  四、全课小结:

  这节课你学到了哪些知识?

数学《因数与倍数》教学设计 篇5

  一、教学内容

  1、因数和倍数

  2、2、5、3的倍数的特征

  3、质数和合数

  二、教学目标

  1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2、使学生通过自主探索,掌握2、5、3的倍数的特征。

  3、逐步培养学生的数学抽象能力。

  三、编排特点

  1、精简概念,减轻学生记忆负担。

  三方面的调整:

  A。不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  B。不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  C。公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2、注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  四、具体编排

  1、因数和倍数

  因数和倍数的概念

  过去:用÷=表示能被整除,÷=表示能被整除。

  现在:用=直接引出因数和倍数的概念。

  (1)用2×6=12给出因数和倍数的概念。

  (2)用3×4=12进一步巩固上述概念。

  (3)让学生利用因数和倍数的概念自主发现12的其他因数。

  (4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

  (5)说明本单元的研究范围。

  注意以下几点:

  (1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

  (2)因数和倍数是一对相互依存的概念,不能单独存在。

  (3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

  (4)注意区分“倍数”与前面学过的“倍”的联系与区别。

  例1(一个数的因数的求法)

  (1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

  (2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

  一个数的因数的特点

  (1)因数是其自身,最小因数是1、

  (2)因数个数有限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  例2(一个数的倍数的求法)

  (1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

  (2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

  做一做

  与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

  一个数的倍数的特点

  (1)最小倍数是其自身,没有的倍数。

  (2)因数个数无限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  2、2、5、3的倍数的特征

  因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

  2的倍数的特征

  (1)从生活情境“双号”引入。

  (2)观察2的倍数的个位数,总结出2的倍数的特征。

  (3)介绍奇数和偶数的概念。

  (4)可让学生随意找一些数进行验证,但不要求严格的证明。

  5的倍数的.特征

  (1)编排方式与2的倍数的特征类似。

  (2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

  3的倍数的特征

  (1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。

  (2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

  (3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

  3、质数和合数

  质数和合数的概念

  (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

  (2)可任出一个数,让学生根据概念判断其为质数还是合数。

  例1(找100以内的质数)

  (1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

  (2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

  五、教学建议

  1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2、要注意培养学生的抽象思维能力。

数学《因数与倍数》教学设计 篇6

  学习内容:

  人教版小学数学五年级下册第21页第8题、第22页。

  学习目标:

  1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

  2.我能运用2、5、3的倍数的特征解决问题。

  学习重点:

  熟练掌握2、5、3的倍数的特征。

  学习难点:

  运用2、5、3的倍数的特征解决综合问题。

  教学过程:

  一、导入新课

  二、检查独学

  1.互动分享独学部分的完成情况。

  2.质疑探讨。

  三、合作探究

  1.小组合作,完成课本第21页第8题。

  (1)3个3的倍数的偶数

  (2)3个5的倍数的奇数

  讨论:你能说出3个既是3的.倍数又是5的倍数的偶数或奇数吗?

  2.自主完成第22页第10题,然后与同伴交流。

  3.小组合作,完成第11题,然后组内代表汇报。

  4.小组交流“生活中的数学”。

数学《因数与倍数》教学设计 篇7

  教学目标:

  1、通过动手操作和写不同的乘法算式,认识倍数和因数。

  2、依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  3、在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  教学重点、难点分析:

  由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

  教学课时:

  人教版五年级下册第二单元《因数与倍数》第一课时

  教具学具准备:

  1、学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

  2、教师准备多媒体课件。

  一、创设情景,明确探究目标

  师:人与人之间存在着许多种关系,我和你们的关系是……?

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  1、操作激活。

  师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

  2、全班交流。

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生汇报。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  小组合作,交流汇报。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

  师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的关系了?

  那你还能找出12的其他因数吗?

  3、举例内化:

  你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

  4、下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:你认为怎样说才正确呢?

  生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

  师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  二、自主探究,找因数和倍数

  1、拓展提升,主动建构:

  ⑴迁移尝试:请学生试着找出36的所有因数。

  ⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法( )×( )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

  ⑶启迪思考:怎样找才能不重复不遗漏?

  小组合作,自主探究,汇报交流。

  找一个数的因数时要做到不重复也不遗漏,方法可以有:

  用乘法( )×( )=36的方法,一对一对地写;

  或者是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写。

  36的因数有:1,2,3,4,6,9,12,18,36。(板书)

  ⑷试一试找20的所有因数。

  ⑸介绍36的因数的另一种写法----集合

  用集合形式写18的因数

  2、创设情境,自主探究:

  请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

  请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

  3、迁移内化,自主探究:

  ⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

  2的倍数有:2,4,6,8,10,12……

  5的倍数有:5,10,15,20,25……

  ⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

  (一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

  (3)还记得因数吗,出示课件

  观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

  三、变式拓展,实践应用

  指导学生做书本“练习二”的第2题和第3题。

  四、全课总结

  师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

  课堂练习:游戏:“我的朋友在哪里?”

  游戏规则:

  (1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”

  (2)相应学号的同学站起来,其他同学判断是否正确。

  作业安排:

  引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

数学《因数与倍数》教学设计精华7篇相关文章:

小学数学六年级上册《位置》教学设计精选7篇

《飞向蓝天的恐龙》教学设计范文3篇 飞向蓝天的恐龙 优秀教案

心理健康教育教学设计方案【必备10篇】

教学设计方案模板7篇

《三个儿子》第二课时教学设计4篇(三个儿子的教学设计)

9乘法口诀教学设计合集5篇

《促织》教学设计【精华8篇】

人教版七年上生物教学设计优秀6篇

教学设计心得体会10篇(体育教学设计培训心得体会)

《圆的面积》教学设计与反思7篇 圆的面积教学反思教后反思