下面是范文网小编收集的精品八年级数学说课稿3篇(八上数学说课稿),供大家参考。
精品八年级数学说课稿1
一次函数说课稿各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:
一、 说教材
(一)本节内容在教材中的地位和作用
本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
3、掌握一次函数的性质.
数学思考:
1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点
教学重点:一次函数的图象和性质。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
二、说教法学法
1、教学方法
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
三、 说教学程序设计
(一)、创设情境,导入新课
活动1:观察:
展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。
课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。
目的有四:
1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;
2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。
3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
4、令教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动1、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)
目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
精品八年级数学说课稿2
一、教材分析
1、教材的地位和作用
正方形在小学学生已经接触过。在现实生活中随处可见,应用非常广泛,它是学生非常熟悉的一种图形。《正方形》是在学生掌握了平行线、三角形、平行四边形、菱形、矩形等有关知识及轴对称图形和中心对称图形等平面几何知识,并且具备有初步的观察、操作、推理和证明等活动经验的基础上出现的。目的在于让学生通过探索正方形的性质,进一步学习、掌握说理、证明的数学方法。这一节课是前面所学知识的延伸和概括,充分体现了平行四边形、菱形、矩形、正方形这些概念之间的联系、区别和从属关系,同时又是高中阶段继续学习正方体、正六面体必备的知识。
2、教学重点难点
教学重点:正方形的概念和性质。
教学难点:理解正方形与平行四边形、菱形、矩形之间的内在联系及正方形的性质和应用。
3、学生情况分析
我是一所山区中学的数学教师,我任教的班级学生基础一般,但学生学习积极性高,求知欲、表现欲强,具有一定的独立思考和探究的能力。但该班的学生在口头表达能力方面稍有欠缺,所以在本节课的教学过程中,我注重学生的说理能力、口头表达能力以及推理能力的培养。
4、教材的处理
在本节课前,学生已经学习了平行四边形,菱形,矩形,他们已经掌握了这些图形的意义、性质及其应用。因此,我对教材进行了如下处理:首先展示现实生活中的一组图片,让学生感知正方形,引入课题;通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,唤起学生的有意记忆和联想,在学生已有知识的基础上,自主探索新知识;通过运用多媒体演示图形的变化,让学生通过观察探索、归纳总结出正方形的意义、性质;最后应用正方形的意义和性质解决问题,使所学知识得以掌握。
二、目标分析
(一)知识与技能
1、理解正方形的概念,掌握正方形性质以及正方形与平行四边形、菱形、矩形之间的关系。
2、能正确运用正方形的性质进行简单的计算、推理、论证。
(二)过程与方法
1、通过本节课的学习培养学生观察、动手、探究、分析、归纳、总结等能力。
2、培养学生的合情推理意识,主动探究的习惯,逐步掌握证明的方法。
3、渗透从一般到特殊,化未知为已知的数学思想及转化的数学思想方法。
(三)情感态度与价值观
1、让学生树立科学、严谨、理论联系实际的良好学风。
2、培养学生相互讨论、相互帮助、团结协作的团队精神。
三、过程分析
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的'养成的主要途径。根据本节的教学内容,新课程标准的要求,学生的实际情况,我设计了以下五个主要的教学环节。
(一)、创设情境、引入课题
前苏联著名数学家辛钦指出:“我想尽力做到在引进新概念、新理论时,学生先有准备,能尽可能地看到这些新概念、新理论的引进是很自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化地理解并掌握所学到的东西。”这段话很精辟道出了引入新知识的一个重要原则──由自然到必然,就是说,在引进概念前,要让学生感到这是很自然的而且是不可避免的。
因此,本节课我创设以下情景,引入课题。
观察1:正方形的地板砖、印章、钟表、包装盒等
提问:你发现了什么?
(这些物品的表面都是正方形,利用正方形可以制作许多漂亮的图案。)
这节课我们一起来研究正方形。
板书课题————正方形。
观察2:一室内装饰图案,里面有平行四边形,菱形,矩形、正方形。
提问:前面我们学习了平行四边形、菱形、矩形,那么正方形与平行四边形、菱形、矩形之间有什么关系?
学生充分欣赏、观察第一组图片,真切地感受现实生活中存在的一种图形——正方形,让学生深刻体会到数学源于生活的真谛,揭示这节课的课题——正方形。通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,而平行四边形、菱形、矩形是学生已经学过的知识,非常熟悉,新课程标准指出教学过程的设计要从学生已有的认知结构出发,注重新旧知识的联系。这样使学生自然联想到:正方形与平行四边形、菱形、矩形之间有什么关系?激起学生思维的火花。
(二)、探究新知,形成概念
1、 复习回顾、开启思维
(1)想一想:矩形、菱形与平行四边形之间的边与角有什么关系?
(学生思考回答后课件展示图形的变化过程①②,使学生在图形的动画变化过程中了解由边、角的变化可使图形发生变化)
(2)量一量:正方形与菱形、正方形与矩形及平行四边形之间的边、角又有什么关系?
(3)说一说:正方形的概念。
(4)议一议:正方形与平行四边形、菱形、矩形之间有什么关系?
(学生合作交流,讨论探究正方形与平行四边形、菱形、矩形的边、角变化关系,然后课件展示图形的变化过程③④⑤,使学生在图形的动画变化过程中再一次了解由边、角的变化可使图形发生变化)
让学生回顾矩形、菱形与平行四边形的关系,既复习了已有的知识,又使学生产生联想:正方形与它们有什么关系,哪些东西发生了变化,从而激起学生强烈的求知欲望,迫切希望知道正方形与平行四边形、菱形、矩形之间哪些东西变化了,让学生动手量,分组讨论、探究正方形与平行四边形、菱形、矩形之间的由边、角变化而使图形之间发生了变化,揭示它们之间的内在规律,激励学生主动探索、大胆想象,体现了新课程理念:让学生经历数学知识的形成与应用的过程,使学生在认识事物时有了从“一般到特殊”的解决问题的思路,引导学生初步掌握“观察、分析、总结”的学习方法,从而有效地攻克了本节课的难点。
2、 共同探讨,类比归纳
(1)比一比:看谁填得又快又好:平行四边形、矩形、菱形的性质。(教师将事先准备好的表格在上课之前发给学生,让学生填完表格的前三列,教师检查,表扬填得好的同学),你知道正方形的性质吗?(学生讨论完成第四列)提问:你是怎样确定正方形的对称轴的?
(2)讲一讲:你是怎样得出正方形的性质的。
新课程的基本理念讲到:教学活动必须尊重学生已有的知识与经验。而平行四边形、菱形、矩形的性质,学生已经很熟悉。教学中我首先印好上面的表格,设计比一比,看谁填得又快又好,意在让全体学生参与到教学中来,回顾了所学知识,,同时开启学生联想的大门:正方形既是特殊的平行四边形,又是特殊的菱形和矩形,那么它就同时具有平行四边形、菱形和矩形的性质。然后学生类比归纳出正方形的性质,体现了“把所学知识建构在已学知识的基础上”的新课程理念,培养学生主动探索的习惯和创新意识。
(3)平行四边形有一个角是直角且邻边相等时变成了正方形,矩形的邻边相等时是正方形。想一想:你能否利用对角线的变化来判断一个四边形是正方形呢?试试看。
(教师在学生分组讨论、答辩后,再借助课件展示学生讨论的由对角线变化判定一个四边形为正方形的方法。)
利用对角线的变化,判断图形之间的变化,培养学生类比归纳的能力,学生在合作探讨中,培养学生的团结协作、共同探索的习惯,同时训练了学生的发现、归纳、总结的能力。
(三)、具体应用,形成技能
1、讲练结合、促进迁移
练习1、已知:如图1,正方形ABCD,对角线AC、BD交于点O ,AC=4
求:⑴、图中∠BAC= , ∠AOB .
⑵、与OA相等的线段有 ,AB= 。
⑶、正方形的周长是 ,面积是 。
图1
练习2、抢答:下列说法是否正确,错误的请说明理由。
①正方形一定是矩形。 ( )
②四条边都相等的四边形是正方形。 ( )
③有一个角是直角的平行四边形是正方形。 ( )
④两条对角线相等且互相垂直平分的四边形是正方形。 ( )
⑤两条对角线相等的菱形是正方形。 ( )
⑥菱形的对角线互相垂直且相等。 ( )
心理学研究表明:八年级学生集中注意力的时间约为25——35分钟,此时设计抢答题可以活跃课堂气氛,消除疲劳,充分调动学生学习的积极性。共同辨析正误,多问几个为什么,使平行四边形、菱形、矩形、正方形这几个概念越辩越清晰,同时培养了学生善于思考,勤于探索的好习惯。
例1、已知:如图1,正方形ABCD被它的两条对角线AC、BD分成四个小三角形,
求证:△AOB、△BOC、△COD、△DOA是全等的等腰直角三角形。
(引导学生用多种方法加以证明:如利用三角形全等;利用正方形的两条对角线是它的对称轴证明;画正方形沿对角线剪开证明等。)
例题1是证明题,意在培养学生的逻辑思维能力、推理能力、书写及语言表达能力,教师要引导学生用多种方法加以证明,鼓励学生从不同的角度解决同一问题,培养学生的发散思维能力。
2、动手操作、解释原理
例2、把一张长方形的纸片如图2那样折一下,可以截出正方形纸片,这是为什么呢?
如果是长方形木板,又怎样从中截出面积最大的正方形木板呢?
图2
例3、现学校有一正方形的花园,为方便游客观赏,要修两条直的小道通过花园(道路宽度忽略不计),把花园分成面积相等的四个部分,请你设计出尽可能多的修路方案,画出草图(不写画法、证明)
第2题引导学生利用所学知识联系生活实际解决问题,让数学贴近生活,达到生活材料数学化,数学教学生活化。把数学学习的内容与生活实际有机结合起来,使学生感受数学与生活的密切联系,增强学生学习数学的驱动力,激发学生学习数学的浓厚兴趣。
第3题让学生设计尽可能多的修路方案,既培养学生的创造性思维能力、发散思维能力,又揭示了正方形的本质,只要是通过正方形的中心且互相垂直的两条直线,就可将正方形分成面积相等的四部分。
3、深化目标、拓展延伸
例4、如图3,边长是1的正方形ABCD绕点A顺时针旋转30°得到正方ABCD,求图中阴影部分的面积。
利用多媒体的动画功能,使正方形ABCD绕点A顺时针旋转30°得到正方形ABCD,让学生仔细观察得出△ADE≌△ABE,再利用∠DAD=30°,正方形边长为1,求得△ABE的面积,从而得出阴影部分的面积,学生积极参与到探索活动之中,去寻找知识在应用中的衔接点,形成正确的应用观,培养学生选择适当的数学方法解决问题的能力。
(四)、归纳小结、深化新知
请同学们回答以下三个问题
1、本节课你学到了那些数学知识?你还有什么疑惑?
平行四边形
正方形
菱形
矩形
2、展示平行四边形、菱形、矩形、正方形四种图形的包含关系图,引导学生回顾正方形的定义和性质,并说出这几种图形之间的联系与区别。
3、 你对老师有何建议和看法,欢迎课后和老师交流。
(全班学生积极思考,相互讨论,然后自由发言。)
让学生小结,不仅回顾了所学知识,而且培养了学生归纳、概括的能力。通过小结,学生的发散思维能力和创新能力得到了加强,并向学生展示了人类认识世界的规律是由特殊到一般、由具体到抽象,使学生站在一个新的高度来认识所学内容。新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识的脉络,形成完整认知结构。
(五)、布置作业,提高能力
1、必做题
(1)已知正方形的一条边长为1cm,求它的对角线长。
(2)已知正方形的一条对角线长为4cm,求它的边长和面积。
2、选做题
(2)如图5,正方形ABCD的对角线BD上有一动点P,PE⊥AB,PF⊥AD,垂足分别为E、F,试指出△EOF的形状?说说你的理由。
原苏联心理学家维果茨基研究指出:“学生的发展有两种水平,第一种称为现有发展水平,表现为学生运用已有知识经验独立完成任务;第二种称为最近发展区,是一种准备水平,表现为学生还不能自行完成任务,需要教师的帮助,但是经过启发也许他就能独立完成任务。”教学就是要把最近发展区水平转化为现有水平。根据学生不同层次的知识水平,为了使学生巩固所学知识,我安排了难度不一的课外题。第一题为必作题,设计了有关正方形的周长、面积、对角线、边长的计算,目的是进一步理解正方形的性质,并考察学生掌握的情况。第二题是选作题,供学有余力的学生完成,体现分层教学,增加有能力的学生学习数学的兴趣和欲望。从而使不同的学生学到了不同的数学,每一个学生都得到了充分的发展。
四、教学评价
前面分析,正方形的概念和性质是本节课的重点,而正方形的有关知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。因此,在本节课中,教师作为学习活动的组织者、引导者、参与者的身份得到了很好的体现。
学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。
由于学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,都应尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己的看法,肯定他们的点滴进步。对出现的错误耐心引导他们分析其产生的原因,鼓励他们改进;对学生思维的闪光点予以肯定鼓励;对学有余力并对数学有浓厚兴趣的同学,通过布置选做题去发展他们的数学才能。
五、 教学反思
数学教学由于数学学科的特点,使得数学教学要突出数学的特点,在展示数学知识的过程中,要把数学思维的教学展示出来,使学生在学习数学的结论性知识的同时获得大量的过程性知识。同时,让学生经历对数学知识归纳总结的全过程。本节课的教学设计具有以下特点:①突出知识的纵横特点;②展示思维的“形”美“神”奇;③体现数学的学用结合;④重视学法的潜移默化。
以上就是我对本节课的教学设计,不足之处恳请各位专家赐教。最后祝大家生活愉快,事业有成。
精品八年级数学说课稿3
一、教材分析
1、教材的地位和作用
本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。
知识技能:(1)了解无理数和实数的概念以及实数的分类。
(2)知道实数与数轴上的点具有一一对应关系。
数学思考:(1) 经历对实数进行分类的过程,发展学生的分类意识。
(2) 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。
解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。
情感态度:(1) 通过了解数系扩充体会数系扩充对人类发展的作用。
(2) 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
二、学情分析
在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:
教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。
(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。
(3)教具:三角板、圆规、多媒体。
学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、 “会类比”、“会分析”、“会归纳”的能力。
四、教程分析:
针对本节教材的特点,我把教学过程设计为以下五个环节:
一、创设问题情景,引出实数的概念
内容:问题:(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数吗?
意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.
学生回答:无理数是无限不循环小数.
带根号的数不一定是无理数.
3、把下列各数分别填入相应的集合内。有理数集合、无理数集合
, , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.
教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。教师点明:实数可分为有理数与无理数。最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明。
二、议一议,
1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如 是正的, 是负的。
教师提出以下问题,让学生思考:
(1)你能把 , , , , , , , , , ,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?
正数集合:
负数集合:
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?
意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.
让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:
在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如, 和 是互为相反数, 和 互为倒数。
三、想一想
让学生思考以下问题
1、a是一个实数,它的相反数为 ,绝对值为 ;
2、如果 ,那么它的倒数为 。
意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的
让学生回答后,教师归纳并板书:实数a的相反数为 ,绝对值为 ,若 它的倒数为 (教师指明:0没有倒数)
增加练习:(多媒体展示)第一组1. 的绝对值是
2、 a是一个实数,它的绝对值是
第二组:1、 的相反数是 ,绝对值是
2、绝对值等于 的数是 , 3、 的绝对值是
4、正实数的绝对值是 ,0的绝对值是 ,负实数的绝对值是
例题:求下列各数的相反数、倒数、绝对值
(1) (2) (3) 学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正。
明晰:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用。(媒体展示两个举例)
四、议一议。
探索用数轴上的点来表示无理数
1、每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示 、 和 这样的无理数的点吗?
2、多媒体展示 的做法和 和 的做法
如图OA=OB,数轴上A点对应的数是多少?
让学生充分思考交流后,引导学生达成以下共识:
探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.
(1)A点对应的数等于 ,它介于1与2之间。
(2)每一个有理数都可以用数轴上的点表示
(3)每一个无理数都可以用数轴上的点来表示
(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大。
五、随堂练习(多媒体展示)
第一组:判断题:
①实数不是有理数就是无理数、②无理数都是无限不循环小数. ③无理数都是无限小数④带根号的数都是无理数. ⑤无理数一定都带根号. ⑥两个无理数之积不一定是无理数. ⑦两个无理数之和一定是无理数. ⑧数轴上的任何一点都可以表示实数.
第二组:
1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。
2、求下列各数的相反数、倒数和绝对值:
(1) (2) (3)
3、在数轴上作出 对应的点。
意图:通过以上练习,检测学生对实数相关知识的掌握情况.
六、小结
1、实数的概念
2、实数可以怎样分类
3、实数a的相反数为 ,绝对值 ,若 ,它的倒数为 。
4、数轴上的点和实数一一对应。
七、作业
课本习题2. 8 1、2、3题
结束语:多媒体展示:
人生的价值,并不是用时间,而是用深度去衡量的。
——列夫托尔斯泰
八、板书设计:
实数
1、实数的概念 4、实数与数轴上的点的关系
2、实数的分类 5、例题
3、实数a的相反数为 , 6、学生练习
绝对值 ,若 ,它的倒数为
精品八年级数学说课稿3篇(八上数学说课稿)相关文章:
★ 一年级数学说课稿北师大版范文6篇 北师大版一年级数学说课稿优秀
★ 中班数学《有趣的》说课稿6篇(有趣的数学中班下学期答案)
★ 湘教版八年级数学教学计划3篇 八年级湘教版数学教学工作计划