高中数学说课稿 篇1
课题《数列的概念与简单表示方法(一)》选自普通高中课程标准试验教科书人教版A版数学必修5第二章第一节的第一课时。我将从教材分析、学情分析、教学目标分析、教法分析、教学过程这五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位和作用
数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:
(1)数列有着广泛的实际应用。如堆放的物品的总数计算要用到数列的前n项和,又如分期储蓄、付款公式的有关计算也要用到数列的一些知识。
(2)数列起着承前启后的作用。一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面,学习数列又为进一步学习数列的极限,等差数列、等比数列的前n项和以及通项公式打好了铺垫。因此就有必要讲好、学好数列。
(3)数列是培养学生数学能力的良好题材。是进行计算,推理等基本训练,综合训练的重要教材。学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。
二、学情分析
从学生知识层面看:学生对数列已有初步的认识,对方程、函数、数学公式的运用已有一定的基础,对方程、函数思想的体会也逐渐深刻。
从学生素质层面看:从高一新生入学开始,我就很注意学生自主探究习惯的养成。现阶段我的学生思维活跃,课堂参与意识较强,而且已经具有一定的分析、推理能力。
三、教学目标分析
根据上面的教材分析以及学情分析,确定了本节课的教学目标:
(1)知识目标:认识数列的特点,掌握数列的概念及表示方法,并明白数列与集合的不同点。了解数列通项公式的意义及数列分类。能由数列的通项公式求出数列的各项,反之,又能由数列的前几项写出数列的一个通项公式。
(2)能力目标:通过对数列概念以及通项公式的探究、推导、应用等过程,锻炼了学生的观察、归纳、类比等分析问题的能力。同时更深层次的理解了数学知识之间的相互渗透性思想。
(3)情感目标:在教学中使学生体会教学知识与现实世界的联系,并且利用各种有趣的,贴近学生生活的素材激发学生的学习兴趣,培养热爱生活的情感。
四、教学重点与难点
根据教学目标以及学生的理解能力与认知水平,我确定了如下的教学重难点。
重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解。
难点:根据数列的前几项的特点,通过多角度、多层次的观察分析归纳出数列的一个通项公式。
五、教法分析
根据本节课的内容和学生的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由老师带领同学们发现问题,分析问题,并解决问题.考虑到学生的认知过程,本节课会采用由易到难的教学进程以及实例给出与练习设置,让学生们充分体会到事物的发展规律。同时为了增大课堂容量,提高教学效率,更吸引同学们的眼光,提高学习热情,本节课还会采用常规手段与现代手段相结合的办法,充分利用多媒体,将引例、例题具体呈现.
高中数学说课稿 篇2
高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、内容分析说明
1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:
(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。
(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。
(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。
2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的
试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的
近似值。
二、学校情况与学生分析
(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。
(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。
三、教学目标
复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:
1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。
(2)会运用展开式的通项公式求展开式的特定项。
2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。
(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。
3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。
四、教学过程
1、知识归纳
(1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?
②学生一起回忆、老师板书。
设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。
②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。
(2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。
③巩固练习 填空
设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。
②变用公式,熟悉公式。
(3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.
展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.
2、例题讲解
例1求 的展开式的第4项的二项式系数,并求的第4项的系数。
讲解过程
设问:这里 ,要求的第4项的有关系数,如何解决?
学生思考计算,回答问题;
老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,
②第4项的系数与的第4项的二项式系数区别。
板书
解:展开式的第4项
所以第4项的系数为 ,二项式系数为 。
选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。
例2 求 的展开式中不含的 项。
讲解过程
设问:①不含的 项是什么样的项?即这一项具有什么性质?
②问题转化为第几项是常数项,谁能看出哪一项是常数项?
师生讨论 “看不出哪一项是常数项,怎么办?”
共同探讨思路:利用通项公式,列出项数的方程,求出项数。
老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。
板书
解:设展开式的第 项为不含 项,那么
令 ,解得 ,所以展开式的第9项是不含的 项。
因此 。
选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。
②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。
例3求 的展开式中, 的系数。
解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。
板书
解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。
而 的展开式含 的项分别是第5项、第4项和第3项,则 的.展开式中 的系数分别是: 。
所以 的展开式中 的系数为
例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.
解:展开式中前三项的系数分别为1, , ,
由题意得2× =1+ ,得n=8.
设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.
有理项为T1=x4,T5= x,T9= .
3、课堂练习
1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.
答案:C
2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是
D.-42
解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·
(-1)r·x ,
当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是.(以数字作答)
解析:∵(x +x )n的展开式中各项系数和为128,
∴令x=1,即得所有项系数和为2n=128.
∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,
令 =5即r=3时,x5项的系数为C =35.
答案:35
五、课堂教学设计说明
1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。
2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。
六、个人见解
高中数学说课稿 篇3
一、教材分析:
1、教材的地位与作用。
本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。
在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。
2、重点与难点。
重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。
难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。
二、目的分析:
知识与技能:掌握用频率预测概率和用列举法求概率方法。
过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。
情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。
三、教法、学法分析:
引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。
四、教学过程分析:
1、引导学生探究
精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。
2、归纳概括
学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。
引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。
3、举例应用
⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。
⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。
4、深化发展
⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。
⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。
高中数学说课稿 篇4
一.说教材
1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。
2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
3.教学目标
(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。
了解并初步应用线性规划的图解法解决一些实际问题。
(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。
(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。
4.重点与难点
重点:理解和用好图解法
难点:如何用图解法寻找线性规划的最优解。
二.说教学方法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。
(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。
(3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。
三.说学法指导
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。
(1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。
(2)联想转化:学生通过分析、探索、得出解决问题的方法。
(3)动手实验:通过作图、实验、从而得出一般解题步骤。
(4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。
四.说教学程序
1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。
3、导学达标之一:创设情境、形成概念
通过引例的问题让学生探索解决新问题的方法。
(设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)
然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。
(设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)
4.导学达标之二:针对问题、举例讲解、形成技能
例一:课本61页例3
(创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)
6.巩固目标:
练习一:学生做课堂练习P64例4
(叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)
练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料、五合板2m2,生产每个书橱需要方木料、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)
(设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)
7.归纳与小结:
小结本课的主要学习内容是什么?(由师生共同来完成本课小结)
(创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)
8.布置作业:
P64. 2
五.说板书设计
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。
高中数学说课稿 篇5
说课:古典概型
麻城理工学校谢卫华
(一)教材地位及作用:本节课是高中数学(必修
3)第三章概率的第二节古典概型的第一课时,是在
随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
(二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:
1.知识与技能
(1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神
(三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观
察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
(四)教学过程:
一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称
古典概型。
三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率
结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即
1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即
P(“出现正面朝上”)==
2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典
P(“出现偶数点”)==
6基本事件的总数
概型计算任何事件的
的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。
五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
(五)布置作业P123练习1、2题(六)板书设计
古典概型古典概型试验一试验二基本事件
古典概型概率
计算公式
例3列表
例1树状图古典概型
例2
以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!
说课教案:古典概型
麻城理工学校谢卫华
高中数学说课稿 篇6
尊敬的各位教师:
大家好,我是xx场的xx号考生。今日,我说课的资料是xx,对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。
一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。
二、说学情
合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。
高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法
经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。
(三)情感态度价值观
经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点
(一)教学重点
由正弦函数的图象得到正弦函数的性质。
(二)教学难点
正弦函数的周期性和单调性。
五、说教法和学法
此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。
(一)新课导入
首先是导入环节,在这一环节中我将采用复习的导入方法。
我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。
这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。
(二)新知探索
接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。
让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。
学生一边看投影,一边思考如下问题:
(1)正弦函数的定义域是什么
(2)正弦函数的值域是什么
(3)正弦函数的最值情景如何
(4)正弦函数的周期
(5)正弦函数的奇偶性
(6)正弦函数的递增区间
给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。
1、定义域:y=sinx定义域为R
2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]
3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。
4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。
5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。
6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。
在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。
(三)课堂练习
第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。
经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。
(四)小结作业
最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。
在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。
经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。
七、说板书设计
我的板书设计遵循简介明了突出重点部分,以下是我的板书
(略)
高中数学说课稿优秀6篇相关文章:
★ 实用的三年级数学说课稿模板3篇(小学三年级数学说课课件)
★ 有关三年级数学说课稿模板3篇(小学三年级数学说课稿一等奖)
★ 人教版六年级上册数学说课稿4篇(11人教版新课标《小学数学+六年级上册》教案说课稿)
★ 高中数学教师期末工作总结4篇(高中数学教师年度工作总结)