下面是范文网小编整理的《圆的面积》说课稿9篇 圆的面积的说课稿,供大家阅读。
《圆的面积》说课稿1
说课内容:冀教版六年级数学上册圆的面积(87—89页)
教材分析:本课是在认识了圆,探索并掌握了长方形、平行四边形、三角形、梯形等面积计算公式的基础上学习的。
通过本课的学习,让学生经历探索圆的面积公式的全过程。
学情分析:学生已经初步认识了圆,掌握了长方形、平行四边形、三角形、梯形等面积计算公式,经历过将平行四边形、三角形、梯形等转化成学过的图形推导面积公式的过程。但对极限思想缺乏认识。
教学目标:
1、知识技能:经历估算、小组合作操作、讨论等探索圆的面积公式的过程。
2、数学思考:在观察、猜想、验证等活动中,体会转化思想和极限思想。
3、问题解决:理解并掌握圆的面积公式,能运用公式解答一些简单的实际问题。
4、情感态度:体验圆面积公式推导的探索性和结论的确定性。
教学重点:掌握圆的面积公式,能运用公式进行计算。
教学难点:圆面积公式的推导过程。
教具准备:课件、平均分成16等份的圆形纸片。
教学流程:
一、创设情境 ,揭示课题。
二、动手操作 ,探索公式。
三、解决问题 ,巩固提高。
四、回馈总结 ,形成体系。
教学过程:
一、创设情境 ,揭示课题。
1、出示飞标板让学生观察:说一说发现了什么?
(飞标板被平均分成了20份,每份都像一个小三角形。)
2、“如果r=10cm,你能利用我们学过的知识估算飞标板的面积吗?”让学生讨论。
3、交流、汇报估算的方法和结果。
(把飞标板看作由20个小三角形组成的,每个小三角形的底约是圆周长的1/20,高近似看作圆的半径。先求出一个三角形的面积,再求出20个小三角形的面积。)
4、飞标板是圆形的,刚才我们估算了它的面积,既麻烦也不一定准确。我们能否推导出圆的面积公式来解决这样的实际问题呢?揭示课题。(圆的面积)
二、动手操作 ,探索公式。
(一)猜想。
1、回忆以前学过图形面积是利用什么方法推导的?
(利用“割补法”把平行四边形转化成长方形;把两个完全一样的三角形、梯形拼成平行四边形……把没学过的图形转化成我们学过的图形推导出来的。)
(设计意图:让学生回忆旧知,引导学生应用旧知类比迁移。这样既实现了有意识的学法指导,又帮助学生找到了解决问题的策略。)
2、猜想:圆能转化成什么图形?(长方形、平行四边形、三角形、梯形)
(二)验证。
1、小组合作:把圆形纸片剪拼、转化成学过的图形。
(设计意图:给学生提供了自主剪拼的时空,也有意识地给学生提供了解决问题的方法和途径。分组操作,更能有效地激发小组成员的干劲,促进不同层次的学生在原有水平上得到提高和发展)
2、展示学生作品。
3、寻求联系:同学们把圆形转化成了学过的平行四边形、梯形、三角形,不管转化成哪种图形,什么是始终不变的?(面积)
4、今天我们就以拼成的平行四边形为例,来探讨圆的面积公式。
“如果我们把这个圆继续分下去,32等份、80等份、400等份……拼成的图形又会怎么样?”
(课件展示)得出结论:平均分的份数越多,拼出的图形就越接近长方形;当平均分的份数无限多时,拼出的图形就是长方形。(渗透极限思想)
(三)总结。
1、小组讨论:拼成的长方形的长和宽与原来圆有什么联系?
2、交流汇报,总结概括圆的面积公式。
3、同学们通过猜想、验证、自己发现了面积公式,真了不起!课后同学们还可以继续研究把圆转化成梯形、三角形的情况,看看谁能推导出圆面积的计算公式呢?
(设计意图:在这个探索过程中,学生不仅体会了转化思想还认识了极限思想,拓展延伸给学生思维的发展留下了足够的空间。)
(四)应用。
上课伊始我们估算了飞标板的面积,现在请同学们利用圆面积公式,计算飞标板的面积。
(设计意图:利用公式计算,体会用公式计算的准确与便捷。)
三、 解决问题 ,巩固提高。
1、数学诊所:
(1)半径是2厘米的圆,它的周长和面积相等。( )
(2)()X2=2X*( )
(3)圆的半径扩大到原来的3倍,圆的面积也扩大原来的3倍。( )
2、“练一练”第1题,计算下列圆的面积。
3、练一练第2题。学生自己读题并解答。
一个圆形旋转展台,台面半径为3米,台面的面积是多少平方米?
四、回馈总结,形成体系。
1、通过本节课的学习有哪些收获?你是怎样学到这些知识的?
2、教师小结:今天我们一起研究了圆的面积,成功地推导出了圆的面积公式,并学会了应用。希望同学们在今后的学习中能更好的地运用转化、极限的思想方法去学习更多的数学知识。
(设计意图:小结体现学法指导,使学生有“学会”转化为“会学”,促使学生实现认知上得飞跃。)
《圆的面积》说课稿2
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:推导出圆的面积公式及其应用。
教学难点:圆与转化后的图形的联系。
教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
《圆的面积》说课稿3
我说课的内容是:人教版小学六年级上册《圆的面积》
一、说教材
1、教材分析:《圆的面积》是在学生认识圆的特征,掌握圆的周长的计算,以及学过直线图形的面积计算方法基础上进行教学的。教材通过情景提出圆的面积的概念,并提出如何把圆转化成已学的图形来计算面积,又一次用到把未知问题转化成已知问题的教学方法。通过圆的面积的学习,不仅帮助学生解决生活中的实际问题,也为以后学习几何知识打下基础。
2、学情分析:学生基本知识掌握的还可以,思维也比较活跃,但学生只具备一定的形象思维能力,抽象思维能力还不完善。
3、说教学目标
知识目标:了解圆的面积含义,理解并掌握圆的面积公式,并能正确计算。
能力目标:让学生经历圆的面积公式的推导过程,从中体会转化的方法。
情感目标:感受数学与生活的联系,体验学习数学的乐趣。
4、说教学重难点:
教学重点:掌握圆的面积公式,能正确计算。
教学难点:理解圆的面积公式的推导过程。
5、说课前准备:
教具:课件,挂图,圆片等。
学具:圆片,剪刀,直尺等。
二、说教法:
考虑到本节课是几何前后知识的重要纽带,教学内容相对抽象,学生的年龄特点,导致抽象逻辑思维较差,还是以形象直观思维为主,所以使用多媒体、实物教具作为辅助教学手段,变抽象为直观,为学生提供丰富的感性材料,促进学生对知识的感知,帮助学生理解,激发学生的兴趣。
三、说学法:
通过实例引入,引导学生关注身边的数学,在借助长方形的面积公式来推导圆的面积公式的同时,是学生体会到观察、归纳、联想,转化等数学方法。采取“扶、放”结合的方法引领学生自主探究、获取知识,形成能力。
四、说教学过程:分成四部分(出示课件)
第一部分、复习引入
1.提问:什么是面积?
2.创设情境,引入课题。
用一根5米长的绳子把小牛拴在草地上,小牛能吃到草的面积有多大?(展示牛吃草的挂图)
同时引导发问:(1)小牛能吃到草的最大面积是个什么图形?
(2)如何求它的面积?(板书课题)
(设计意图)通过实例,发现数学问题,激发学生学习数学的兴趣。
第二部分、圆面积公式推导过程
1.理解圆的面积含义:通过复习中“牛吃草”和几个圆形教具来理解圆的面积,同时让学生用手指出圆的面积指的哪部分?与周长要区别开。
(设计意图)通过感官帮助学生理解圆的面积含义,加深印象。
2.学生动手操作,推导圆的面积公式。
(1)向学生提出问题:我们应把圆转化成一个什么样的图形呢?学生自学课本有关内容,探索如何把一个圆转化成已学过的图形,并且思考:圆与转化后的图形有什么关系?在这里渗透转化的思想。
(2)学生自学后,探讨:为什么只能得到近似的平行四边形?能拼成一个近似的长方形吗?学生相互讨论,应如何操作?(只有分的份数越多,才越接近长方形。)此时,学生操作后,在教师的引导下,说说如何分、剪、拼的。
并思考:能拼成一个标准的长方形吗?
教师出示教具,引导学生说出圆与转化后长方形的联系。根据学生的回答,得出圆的面积公式。
(设计意图)通过“扶,放”相结合,发展学生的个性思维,加深对新知识的理解。
(3)小结:根据圆的面积公式提出:计算圆的面积需要知道什么条件?
(4)自学例1,并独立完成“做一做”第1题
通过例1和“做一做”,巩固新知,使学生掌握,已知圆的直径,求面积的方法,同时提醒学生:半径的使用方法。
第三部分:课堂练习
完成课本练习十六中部分习题
第1题:填表格。可直接利用公式求面积,加深对公式的理解和掌握。
第5题:求圆的面积和周长。意在复习旧知巩固新知,又在区别二者不同算法。
第2题;解决生活实践问题,说明生活中离不开数学。
第3题:利用周长求面积。增加难度,拓展学生的思维。
(设计意图)练习设计力求有针对性、层次性、生活实践性,由易到难,在掌握知识中形成能力。
第四部分:课后作业
解决“牛吃草问题”
新课前不能解决的问题,通过学习找到答案,让学生体验学习数学的乐趣。
五、板书设计(出示课件)
圆的面积
长方形的面积=长×宽
圆的面积=周长一半×半径
S=πr×r=πr2
《圆的面积》说课稿4
一.教材分析
1.教材内容
本节内容是从一个小狗活动的实例出发结合学生的生活经验引出圆的面积。
2.教材的地位和作用
在此之前,学生已经学过了圆的周长,弧长等有关概念、公式,在这个基础上,学好本节课,掌握圆的面积公式和有关计算,为学生今后学习和圆有关的图形的面积奠定了基础。特别是在面积的推导过程中,潜意识的培养了学生的极限思想。
二.目标分析
在素质教育背景下的数学教学应以学生发展为本,培养能力为重,同时也要强化应用意识,所以教学目标的确定应建立在学生的学习过程上,而预备年级的学生只具备一定的形象思维能力,抽象思维能力还不完备,所以根据本节课的特点确定如下教学目标.
1.知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题.
2.能力目标:
使学生了解从未知到已知的转化过程,逐渐培养学生的抽象思维能力。
3.情感目标:
通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三.重点难点分析
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,弧长无限的接近线段的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四.教法分析
1.教法分析:
针对刚迈入初中的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生同甘共苦一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
3.教学手段
为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
五.教学过程
1.复习(1)长方形面积公式
(2)平行四边形面积公式
平行四边形面积公式的求法是通过割补转化为长方形面积来解决。
2.创设问题情景,引入课题
一只小狗被它的主人用一根长1米的绳子栓在草地上,问小狗能够活动的范围有多大?
问题:1.小狗能够活动的最大面积是一个什么图形?
2.如何求圆的面积呢?
3.师生互动,探索新知
(1)引导:
平行四边形面积可以转化成长方形面积,那么圆的面积是否也可以转化成长方形面积来解决呢?
(2)实验操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,是否可以将圆转化成为长方形。
(3)动画展示
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
当我们把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(4)得出结论:
启发1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
启发2:长方形的长、宽与圆有什么关系呢?
再次展示动画。
设圆的半径为r
启发学生寻找规律,由圆的周长为2pi;r,推导得出长方形长为pi;r,宽为r,
圆的面积。
4.实际应用
(1)利用公式解决实际问题:
求小狗活动范围的最大面积问题?
(2)例题讲解
例题1:已知一个圆的直径为24分米,求这个圆的面积
注意书写格式:1)写出公式2)代入数字3)计算结果4)写出单位。
(3)巩固思考
小明家新买了一个圆桌,妈妈让他求桌面的面积。你能够帮助小明回答吗?
(4)巩固练习
例2.一个圆形花坛,周围栏杆的长是25.12米,这个花坛的种植面积是多少?(pi;asymp;3.14)
练习:
1.判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2.把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
40cm
3.一块直径为40厘米的圆形铝板上,
有4个半径为5厘米的小孔,这块铝板
的面积是多少
5.归纳小结
为了使学生对所学的知识有一个完整而深刻的认识,利用提问形式,从以下方面小结,学生先回答,教师归纳总结。体现学生为主体,教师为主导的教学思想。
(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
6.布置作业
P105练习3.3(1)2,3。
P106习题3.31,2。
六.评价分析:
精心设计问题情景,积极引导,启发学生参与公式的形式过程,但课堂教学是一个动态过程,学生的思维又常常受到课堂气氛,突发事件的影响,所以教师应根据课堂实施和学生反馈的信息(举手情况,题目的解答情况,学生讨论小结的结果情况)因势利导,随机应变,调整好教学环节,使课堂教学效果达到最佳状态.同时也应该根据学生作业反馈的信息及时作好教后感笔录,以便今后更好地改进教学,提高教学质量。圆的面积第二节课的目的主要是巩固练习。
《圆的面积》说课稿5
一、说教材
1、说课内容:说课内容是西师版六年制小学数学第十一册第二单元中<<圆的面积计算>>第一课时。
2、教材、学生情况分析:
这是一节概念与计算相结合研究几何形体的教学内容,我认为该内容与教材前后的内容有着密切的关系.它是在学生学习了平面直线图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容, 为以后学习圆柱、圆锥等知识和绘制统计图作了铺垫。
从学生的知识水平来看,从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。从空间观念方面来说,进入了一个新的领域.
3、教学目标
遵循教材的编写意图并从学生的知识水平以及生活经验出发,我拟订这节课的教学目标为:
(1)知识与技能目标:推导出圆面积计算的公式,并会用公式计算圆的面积;
(2)过程与方法目标:进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)情感态度与价值观目标:注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标:把教学重点定为是掌握圆面积的计算公式;
教学难点则是圆面积计算公式的推导和极限思想的渗透;
教学关键是弄清拼成的图形的各部分与原来圆的关系。
二、说教学策略
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学我以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:(具体教学策略请看教学过程部分)
1.知识呈现生活化。以云南景洪的曼飞白塔的塔基为圆柱形石座,底面周长是42.6米,这座塔至少占地多少平方米。让生活数学这一条红线贯穿于课的始终.
2.学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3.学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4.学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。
从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
三、教学过程
秉着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究, 构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
兴趣是学生积极主动地获取知识,形成技能的重要心理基础,为了使学生乐学,在第一环节中,我首先通过教材插图,从而引出课题:圆的面积计算。
在这一环节中,我通过情景设置,拉近数学知识与现实生活的距离,从而激发了学生的求知,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想, 明确方向----化曲为直,扫清障碍----实验探究,推导公式----展示成果,体验成功----首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想:“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,想到可以将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
在第二步:化曲为直,扫清障碍教学中。我首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段。这一规律的发现,不仅向学生渗透了极限的思想,更
要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
在第三步:实验探究,推导公式教学中。我首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,我将引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似平行四边形,长方形,三角形和梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导,得出圆面积等于周长的一半乘以半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后, 我进入第五步: 首尾呼应,巩固新知的教学。这座塔至少占地多少平方米;求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节: 分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
(附练习设计)
第一层:基本性练习
1. 画一个半径为2.5cm的`圆,再求出这个圆的面积。
第二层:综合性练习
2. 求下面各圆的面积。
r=15厘米 r=24厘米 d=9分米
第三层:发展性练习
3.一个运动场(如下图),中间是长方形,两头是半圆形。这个运动场的周长是多少?面积是多少?
《圆的面积》说课稿6
(一)说课内容
说课内容是人教版小学数学课本第十一册"圆的面积"。
(二)教学内容的地位和作用
本课是在学生已经掌握长方形面积的基础上,通过直观、演示,把圆分割成若干等份,再拼成一个近似的长方形,然后由长方形面积公式推导出圆面积的计算公式。
圆的面积是本单元的教学重点,也是今后进一步学习圆柱体,圆锥体等知识的基矗本节课的教学目标是:
(三)教学目标
1.通过学生操作、观察推导出圆面积的计算公式,并能运用公式正确计算圆的面积。
2.通过教学培养学生初步的空间观念。
3.渗透转化数学思想。
(四)教学重点、难点
本节课的教学重点是观察操作总结圆面积公式。难点是理解公式的推导过程。关健是弄清圆与转化后的近似长方形之间的关系。
(五)教学具准备:
本课教学,采用直观演示和学生动手操作等方法,充分运用电教媒体辅助教学,由圆转化为近似的长方形,总结出圆的面积公式,并能在实际中加以运用。
(六)本节课分五个环节来设计教学。
第一个环节:创设情境,引出问题
课件演示:(牛吃草)看到这个画面,你能获得哪些数学信息?那牛吃到草的面积是多少你知道吗?这节课我们大家就一起来探讨圆的面积。)(板书课题)
第二个环节:新授
教学中,运用转化的方法,将未知转化为已知,不仅可以化繁为简,化难为易,而且可以勾通知识之间的联系。可以帮助学生理解新知识,提高课堂教学效率。鉴于此,新授部分我是这样设计的。
(一)公式的推导
1.准备题请同学们回忆平行四边形的面积计算公式是怎样推导出来的。再想想,三角形、梯形又都是转化成哪一种图形推导出它们的面积计算公式的。本课就用这种转化的方法来推导圆面积的计算公式。
2.推导圆面积公式
第一层次教授转化的方法。让学生看屏幕上的圆,老师把它平均分成8份,先把上面的4等份和下面的4等份分开,再交叉地拼在一起,看看,拼成了一个什么图形的近似图形?为什么说是近似的平行四边形呢?让学生继续观察,我们将其中左边的一个等份再平均分成2份,将一小份移到右边拼起来,现在拼成的图形近似什么图形?由圆转化成近似的长方形,什么发生了变化,什么没有变?
第二层次运用转化方法让学生进行操作,再通过演示渗透极限思想。让学生拿出准备好的16等份的圆,利用刚才的方法把它剪开拼成一个近似的长方形。观察一下,拼成的近似的长方形与屏幕上8等份的比较一下,哪个更接近于长方形,为什么?如果我们把一个圆等分成32份,拼成的长方形会怎样呢?(屏幕上演示)这时引导学生思考:我们刚才是把一个圆平均分成8份、16份、32份,如果再继续分下去,分的份数更多,拼成的图形你会发现什么?由此可得:把圆等分的份数越多,拼成的图形就越接近于长方形,尽管形状发生了变化,但面积是不变的,也就是说,拼成的长方形的面积等于圆的面积。
第三层次推导公式让学生再注意观察屏幕上显示的由圆转化为长方形的过程,思考这个长方形的长和宽各相当圆的哪一部分?那么,能根据长方形的面积公式推导出圆的面积公式吗?归纳得到圆的面积。(公式略)回顾学习过程:将圆平均分成8份,进行拼图,目的是教给学生由圆转化为近似长方形的方法,并初步感知圆的形状变了,但面积并没有变。再让学生亲自动手将圆平均分成16份拼图,使学生进一步感知拼成的图形更接近于长方形。
此时,经过学生的空间想象,他们在大脑中已经形成了由圆转化成长方形的图像,这时在计算机上再显示将圆等分32份后拼成的近似于长方形的图像,会使学生在视觉上得到证实,他们的思维结果是正确的:将圆平均分成的份数越多,拼成的图形越接近长方形,但面积始终是不变的。运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进学生良好思维品质的形成,达到了预想的教学目的。
3.小结
让学生回忆一下圆的面积公式是怎样推导出来的?要求圆的面积,需要知道什么条件?这样使学生的思维能力得到进一步的提高。
4.阶段性练习
a.看标有半径的圆,求面积。
b.已知半径求面积。(练习时交待运算顺序。)
(二)学习例1要求学生运用公式正确计算,注意书写格式和运算顺序。
第三个环节:巩固练习
对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。第一层次的练习是以文字题的形式给出直径求圆的面积。第二层次的练习给出半径和直径求圆的周长和面积。第三层次的练习是在两个圆(一个标有圆心,一个没标圆心)中量出所需条件求圆的面积。然后,对全课进行总结,质疑问难。
第四个环节:总结反思,课外延伸
好了今天这节课我们就到这里,你觉得自己今天表现怎么样?你觉得同学们的表现怎么样?你觉得老师表现怎么样?课堂上你高兴吗?这么高兴的一堂课你都有什么收获啊?
第五个环节:布置作业。
本节课可采用由计算机设计的三维动画,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,使教学过程有机组合,充分显示了电化教学的优势,较之其它教学手段和方法更易实现教学过程的最优化。
《圆的面积》说课稿7
一、把握教材,定为目标
(一)教材
《圆的面积》是义务教育课程标准试验教科书小学数学第十一册第四单元的内容,它是在学生掌握了圆的周长及三角形、长方形、平行四边形、梯形的面积计算基础上进行教学的,而像圆这样的曲线图形的面积计算,学生还是第一次接触到。引导学生运用转化的思想求圆的面积。由于让学生完全自主探索如何把圆转化成长方形是有很大难度的,教材上给了明确的提示,让学生利用学具进行操作,在此基础上,让学生自主发现圆的面积与拼成的长方形面积的关系,圆的周长、半径和长方形长、宽的关系,并推出圆的面积计算公式。之后练习中安排了已知半径、直径或圆的周长求面积的题目,还安排了一些求组合图形面积的题目,以培养学生综合运用知识的能力。
(二)目标
基于以上认识,我认为本课的教学目标应确定为:
1、知识目标:使学生理解圆面积公式的推导过程,掌握求圆面积的方法,并能正确计算;并能运用公式解答一些简单的实际问题。
2、能力目标:通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。
3、德育目标:渗透极限思想,进行辩证唯物主义观念的启蒙教育。
(三)重点、难点
本节课的重点是:正确计算圆的面积。
本节课的难点是:圆面积公式的推导。
二、选择教法,突出主体
充分利用学生已学的数学知识和数学思想方法进行教学。首先教学圆面积定义时,先让学生回忆已学过的圆形面积的含义,教学圆的面积计算公式之前,让学生体会到将一个圆形转换成已学过的图形,是一种基本的数学思想和方法,但每个图形面积公式的推导过程又有其自身的特殊性。在充分发挥多媒体课件的作用,利用它的优势,不断把圆细分,这样拼出的图形越来越接近于长方形,效果更直观。
三、教学过程与总体评价
(一)导入新课
我们之前学过哪些图形的面积,那么圆的面积怎样计算呢?只要知道了圆的面积公式,就可以解决计算出圆的面积,这节课我们就一起来学习圆的面积。
(二)新授
1、什么是圆的面积?PPT动画展示圆的面积定义
2、回忆平行四边形的面积、圆的周长计算公式,猜想我们可不可以把求圆的面积转化成其他平面图形来推导圆的面积计算公式?
3、PPT展示将圆分成不同的(4、8、16、64...)偶数等份,按照一定的方式组合成新的图形?
4、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形。
5、转化后的长方形的长和宽与原来的圆有什么关系?
1)转化后长方形的长相当于什么?宽相当于什么?
2)你能从计算长方形的面积推导出计算圆面积的公式吗?
6、汇报讨论结果。
7、运用新知识,解决问题。r=2cm,求圆的面积
8、拓展思考
(三)总结
小结:本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
《圆的面积》说课稿8
教学内容:
教科书第67-68页。
教学目标:
1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。
2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。
德育目标:
渗透极限思想,进行辩证唯物主义观念的启蒙教育。
教学重点:
正确计算圆的面积
教学难点:
圆面积公式的推导
学具准备:
水彩笔、剪刀、附页1
教具准备:
多媒体课件
教学过程:
一、 导入新课
请看一幅图,从图中你发现了什么信息?
只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。
二、新授
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果,师板书
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
3)书P703.
三、总结:
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
板书设计:
圆的面积
剪、拼==》转化
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
S圆=πr2
教后反思:
本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。
《圆的面积》说课稿9
尊敬的各位评委,大家好:
我说课的内容是青岛版五年级下册第一单元的《圆的面积》
一、教材分析。
圆是小学阶段最后的一个平面图形,通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。圆的面积是在学生认识了圆的特征,掌握了圆的周长的计算,以及学过了直线图形的面积计算方法的基础上进行教学的。通过对圆的面积有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的扇形统计图打下基础。因此,使学生明确圆面积的概念,理解和掌握圆面积公式的推导及应用是本节课的重点。
二、学情分析。
学生由学习直线图形的面积到曲线图形的面积,无论内容本身还是空间观念都是一个新的领域。尽管学生在学习前面平行四边形、三角形和梯形的面积公式时,对转化的策略有所了解,但是学生对于化圆为方的方法思想,无论在理解上还是运用上都有一定的困难,因此教学难点就是圆面积公式的推导。
三、教学目标。
根据自己对教材的理解和课标对教材的要求,联系学生已有知识经验及认知规律,确定本节课的教学目标如下;
1.使学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的实际问题。
2.使学生进一步体会转化方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
四、教学策略。
为了更好的落实教学目标,在本节内容的教学中,我将重点采取如下策略:一是合理利用方法策略的迁移,借助对转化思想的回忆,唤醒已有的转化意识,推导圆面积的计算方法;二是强化过程,自主探索,引导学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式。
五、教学过程:
基于以上认识,为了有效的突出重点,突破难点,顺利实现教学目标,我设计了下面五个教学环节:
第一环节,揭示课题,明确目标。
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生区别红色封闭的曲线长度是圆的周长,曲线围成的蓝色圆面的大小就是这个圆的面积。接着出示课题。
揭示课题后追问学生:针对这个课题,你想知道什么?引导学生提出:圆的面积公式是怎样的?怎样推导圆的面积公式?引导学生明确学习目标,激发学生的求知欲望。
第二环节,猜想验证,推导公式。
1、学习例7,提出猜想。首先出示例7,引导学生弄清题意,明确第一幅图的重点是研究圆面积与正方形面积之间的关系,接着放手让学生观察、计算、填空,初步感知圆的面积大约是这个正方形的1/4。
然后,要求学生用同样的方法,根据第2、3幅图提供的数据填表,在学生思考交流的基础上提出问题:你能发现圆的面积与它的半径有什么关系吗?引导学生探索,形成猜想:圆的面积是它半径平方的3倍多一些……
2、学习例8,推导公式
在提出猜想的基础上,出示例8,要求学生根据题目要求拼图,并引导学生观察拼成了一个什么图形。在学生初步认识到拼成了一个近似的平行四边形的基础上,教师利用多媒体课件演示,把圆平均分成32份、64份……,引导学生观察,认识到随着平均分的份数越来越多,拼成的图形也越来越接近于长方形,为分析拼成的长方形与原来的圆的关系,推导公式奠定基础。在转化的基础上提出问题:拼成的长方形与原来的圆有什么联系?引导学生在独立思考和合作交流的过程中,认识到3个必要的条件:长方形的面积=圆的面积,长方形的宽=圆的半径,长方形的长=圆周长的一半。在弄清3个必要条件的基础上,提出问题:根据长方形的面积计算方法,怎样计算圆的面积?引导学生在独立思考和合作交流的过程中,推导出圆的面积公式,并板书。
3、学习例9,应用公式。
在学生独立解答、合作交流的过程中,引导点拨运算顺序。
本环节的设计,注意设计有层次的问题,引导学生独立思考,合作交流,经历猜想、验证的过程,有利于促进学生理解掌握圆面积公式,发展数学思考,体会数学方法。
第三环节,自主练习,应用拓展
引导学生分别独立完成练一练。注意引导学生弄清楚根据半径、直径、周长计算面积的方法。
第四环节,总结反思,梳理知识
引导学生对本节课的学习内容及收获进行总结反思,帮助他们建立起科学的知识系统,并在这一过程中培养他们自觉建构知识的良好习惯。
各位评委、各位专家:圆的面积一节的教学设计坚持以“促进学生主动发展”的理念为指导,以发展学生的概括抽象能力、培养学生良好的数学思维为核心,以独立思考、合作交流为主线,着力引导学生在自主探究中去推导、应用圆面积公式,努力促进学生知识与能力、过程与方法、情感与态度的和谐发展,预期应该收到良好的教学效果。说课中有不当之处,请各位评委专家批评指正。
《圆的面积》说课稿9篇 圆的面积的说课稿相关文章:
★ 数学五年级上册《平行四边形的面积》说课稿7篇 五年级平行四边形的面积思维导图
★ 《长方体和正方体表面积》教学反思13篇 长方体和正方体的表面积教学反思简短
★ 长方体和正方体表面积说课稿5篇(长方体正方体表面积说课稿8分钟)
★ 《长方体和正方体的表面积》的教学反思12篇 长方体和正方体的表面积教案反思
★ 长方体和正方体的表面积教学反思12篇(正方体长方体的表面积课后反思)
★ 《长方体和正方体表面积》说课稿4篇(长方体和正方体的表面积教学案例)
★ “梯形的面积计算”教学反思10篇 梯形的面积计算教学反思