初二数学知识点归纳【合集5篇】

时间:2023-10-26 22:50:37 综合范文

初二数学知识点归纳 篇1

  一.定义

  1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数。

  2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。

  3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,求一个数的立方根的运算,叫做开立方。

  4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数。

  5.无限不循环小数又叫无理数。

  6.有理数和无理数统称实数。

  7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的。

  二.重点

  1.平方与开平方互为逆运算。

  2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根。

  3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。

  4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位。

  5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0。

  三.注意

  1.被开方数一定是非负数。

  ,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式。

初二数学知识点归纳 篇2

  1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数、

  2、一次函数和正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数、

  说明:

(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定、

(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数、

(3)当b=0,k≠0时,y=b仍是一次函数、

(4)当b=0,k=0时,它不是一次函数、

  3、一次函数的图象(三步画图象)

  由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b、

  由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0)、但也不必一定选取这两个特殊点、画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可、

  4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)

(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小、

(2)|k|大小决定直线的。倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);

(3)b的正、负决定直线与y轴交点的位置;

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数、

(4)由于k,b的符号不同,直线所经过的象限也不同;

  5、确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值、

(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值、

  6、待定系数法

  先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法、其中未知系数也叫待定系数、例如:函数y=kx+b中,k,b就是待定系数、

  7、用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式、

  8、本章思想方法

(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

初二数学知识点归纳 篇3

  平方根与立方根知识点

  平方根:

  概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。

  因为(±23)=529,所以±23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?

  概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

  概括3:求一个数a(a≥0)的平方根的运算,叫做开平方。

  开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。

  一、算术平方根的概念

  正数a有两个平方根(表示为?根,表示为a。0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0。”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:a,我们把其中正的平方根,叫做a的算术平方

(1)被开方数a表示非负数,即a≥0;

(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a<0时,a无意义。

  如:=3,8是64的算术平方根,6无意义。9既表示对9进行开平方运算,也表示9的正的平方根。

  二、平方根与算术平方根的区别在于

①定义不同;

②个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个;③表示方法不同:正数a的平方根表示为?a,正数a的算术平方根表示为a;④取值范围不同:正数的算术平方根一定是正数,正数的平方根是一正一负。⑤0的平方根与算术平方根都是0.

  三、例题讲解:

  例1、求下列各数的算术平方根:

(1)100;

(2)49;

(3)

  注意:由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算

  术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义)

  用几何图形可以直观地表示算术平方根的意义如有一个面积为a(a应是非负数)、边长为

  的正方形就表示a的算术平方根。

  这里需要说明的是,算术平方根的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平方根。

  3、立方根

(1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

(2)一个数a的立方根,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数。

初二数学知识点归纳 篇4

  乘法与因式分解a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b|

  |a-b||a|+|b|

  |a|=ab

  |a-b||a|-|b| -|a||a|

  一元二次方程的解 -b+(b2-4ac)/2a

-b-(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a

  X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac0 注:方程有两个不等的实根

  b2-4ac0 注:方程没有实根,有共轭复数根

  某些数列前n项和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R

  注:其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB

  注:角B是边a和边c的夹角

初二数学知识点归纳 篇5

(1)制定学习计划还是非常有必要的。虽说计划没有变化快,但是对于学习没有自律性和实践性的同学们来说制定一个适合自己学习方式的学习计划还是非常有必要的。一个良好的学习时间表或是学习计划就是成功的基石,如果同学们自律性可以强一些,能够每天按照计划表上的时间分工利用好时间,那这个时候的学习效率是不可估量的。

(2)上课认真听讲才可能进步。可能同学会有不服气,现在每个班级中都会有一些“极其聪明”的学生,就算是不学习每天上课都在溜号,也能在最后考试的时候取得很好的成绩,这就在一定程度上给了很多同学一种误导那就是上课不用认真听讲也能学的很好。这就大错特错了,只有上课听讲才能给自己最大程度的辅导和帮助,课堂就是最好的老师也是最便利的资源。

(3)敢于向老师提问。不仅是在学习数学的时候,在学习其他课的时候也同样适用,不要害羞也不要害怕,如果实在不敢在课堂上向老师发问,那就一定要记好题目和自己不懂的点,下课时候再去问老师。总之,提问是一个很好的习惯,不光能让自己的思路明了,也会给老师留下勤于思考善于提问的好印象。

初二数学知识点归纳【合集5篇】相关文章:

高三化学必考知识点【汇编11篇】

中考语文初一至初三必备知识点(通用4篇)

小学六年级数学知识点上册【汇编11篇】

三年级数学知识点归纳整理【精华7篇】

初中政治知识点总结3篇

高一生物知识点总结人教版(通用4篇)

生物八年级上册知识点(合集12篇)

高一政治必修一知识点总结【最新6篇】

高二地理选修四知识点8篇

初中冀教版数学知识点4篇 冀教版初中数学知识体系