下面是范文网小编分享的高一数学教案3篇(高中数学全部教案),供大家参考。
高一数学教案1
学习目标
1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2、掌握标准方程中的几何意义
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
一、预习检查
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
二、问题探究
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、
例3(理)求离心率为,且过点的双曲线标准方程、
三、思维训练
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、
四、知识巩固
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、
高一数学教案2
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情
学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标
(一)知识与技能目标
能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标
经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标
激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点
(一)重点
用解析法研究直线与圆的位置关系。
(二)难点
体会用解析法解决问题的数学思想。
五、教学方法
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
六、教学过程
(一)导入新课
教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?
教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。
设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。
(二)新课教学——探究新知
教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。
判断方法:
(1)定义法:看直线与圆公共点个数
即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。
(2)比较法:圆心到直线的距离d与圆的半径r做比较,
(三)合作探究——深化新知
教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。
已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?
让学生自主探索,讨论交流,并阐述自己的解题思路。
当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。
(四)归纳总结——巩固新知
为了将结论由特殊推广到一般引导学生思考:
可由方程组的解的不同情况来判断:
当方程组有两组实数解时,直线l与圆C相交;
当方程组有一组实数解时,直线l与圆C相切;
当方程组没有实数解时,直线l与圆C相离。
活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。
(五)小结作业
在小结环节,我会以口头提问的方式:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。
七、板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高一数学教案3
教学目标
1.理解分数指数幂的含义,了解实数指数幂的意义。
2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。
教学重点
1.分数指数幂含义的理解。
2.有理数指数幂的运算性质的理解。
3.有理数指数幂的运算和化简。
教学难点
1.分数指数幂含义的理解。
2.有理数指数幂的运算和化简。
教学过程
一.问题情景
上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?
二.学生活动
1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系
(1)=(2)=
2.从上述问题中,你能得到的结论为
3.(a0)及(a0)能否化成指数幂的形式?
三.数学理论
正分数指数幂的意义:=(a0,m,n均为正整数)
负分数指数幂的意义:=(a0,m,n均为正整数)
1.规定:0的正分数指数幂仍是0,即=0
0的负分数指数幂无意义。
3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的'运算性质同样适用于有理数指数幂。
即=(1)
=(2)其中s,tQ,a0,b0
=(3)
四.数学运用
例1求值:
(1)(2)(3)(4)
例2用分数指数幂的形式表示下列各式(a0)
(1)(2)
例3化简
(1)
(2)(3)
例4化简
例5已知求(1)(2)
五.回顾小结
1.分数指数幂的意义。=(0,m,n)
无意义
2.有理数指数幂的运算性质
3.整式运算律及乘法公式在分数指数幂运算中仍适用
4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分
练习P47-48练习1,2,3,4
六.课外作业
P48习题2.2(1)2,4
高一数学教案3篇(高中数学全部教案)相关文章:
相关热词搜索:高一数学教案