有关八年级数学教案3篇 初中8年级数学教案

时间:2023-09-23 13:03:00 教案

  下面是范文网小编分享的有关八年级数学教案3篇 初中8年级数学教案,以供参考。

有关八年级数学教案3篇 初中8年级数学教案

有关八年级数学教案1

  知识结构:

  重点与难点分析:

  本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

  本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

  教法建议:

  本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

  (2)采用“类比”的学习方法,获取知识。

  由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

  (3)总结,形成知识结构

  为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?

  一.教学目标:

  1.使学生掌握等腰三角形的判定定理及其推论;

  2.掌握等腰三角形判定定理的运用;

  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  4.通过自主学习的发展体验获取数学知识的感受;

  5.通过知识的纵横迁移感受数学的辩证特征.

  二.教学重点:等腰三角形的判定定理

  三.教学难点:性质与判定的区别

  四.教学用具:直尺,微机

  五.教学方法:以学生为主体的讨论探索法

  六.教学过程:

  1、新课背景知识复习

  (1)请同学们说出互逆命题和互逆定理的概念

  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

  (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

  1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.

  (简称“等角对等边”).

  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  已知:如图,△ABC中,∠B=∠C.

  求证:AB=AC.

  教师可引导学生分析:

  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

  2.推论1:三个角都相等的三角形是等边三角形.

  推论2:有一个角等于60°的等腰三角形是等边三角形.

  要让学生自己推证这两条推论.

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

  3.应用举例

  例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求证:AB=AC.

  证明:(略)由学生板演即可.

  补充例题:(投影展示)

  1.已知:如图,AB=AD,∠B=∠D.

  求证:CB=CD.

  分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

  证明:连结BD,在 中, (已知)

  (等边对等角)

  (已知)

  即

  (等教对等边)

  小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

  2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

  分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

  证明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小结:

  (1)等腰三角形判定定理及推论.

  (2)等腰三角形和等边三角形的证法.

  七.练习

  教材 P.75中1、2、3.

  八.作业

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板书设计

有关八年级数学教案2

  一、回顾交流,合作学习

  【活动方略】

  活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

  【问题探究1】(投影显示)

  飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

  思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

  【活动方略】

  教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

  学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

  【问题探究2】(投影显示)

  一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

  思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

  【活动方略】

  教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

  学生活动:思考后,完成“问题探究2”,小结方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD为直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此这个零件符合要求.

  【问题探究3】

  甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

  思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

  【活动方略】

  教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

  学生活动:课堂练习,与同伴交流或举手争取上台演示

有关八年级数学教案3

  教学目标:

  1、 理解运用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的综合运用。

  3、 进一步培养学生综合、分析数学问题的能力。

  教学重点:

  运用平方差公式分解因式。

  教学难点:

  高次指数的转化,提公因式法,平方差公式的灵活运用。

  教学案例:

  我们数学组的观课议课主题:

  1、关注学生的合作交流

  2、如何使学困生能积极参与课堂交流。

  在精心备课过程中,我设计了这样的自学提示:

  1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

  2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

  ①-x2+y2 ②-x2-y2 ③4-9x2

  ④ (x+y)2-(x-y)2 ⑤ a4-b4

  3、试总结运用平方差公式因式分解的条件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

  5、试总结因式分解的步骤是什么?

  师巡回指导,生自主探究后交流合作。

  生交流热情很高,但把全部问题分析完已用了30分钟。

  生展示自学成果。

  生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

  生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)

  生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

  生5: a4-b4可分解为(a2+b2)(a2-b2)

  生6:不对,a2-b2 还能继续分解为a+b)(a-b)

  师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

  反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

  (1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

  下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

  (2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

  我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的.职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

  确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

有关八年级数学教案3篇 初中8年级数学教案相关文章:

小学数学教案范文4篇 小学数学教案详细

人教版六年级下册数学教案模板5篇 新人教版六年级下册数学教案

北师大版四年级上册数学教案12篇(四年级北师大版数学买文具教案)

小班数学活动教案《按颜色分类》3篇(小班数学活动教案,按颜色分类)

人教版一年级数学下册教案3篇(一年级下册数学第一单元教案)

五年级上册数学教案范文13篇

小学一年级上册数学教案6篇 新人教版一年级上册数学教案

《相邻数》幼儿园大班数学活动教案16篇(2和3的相邻数大班教案)

《点数1-10》小班数学优秀教案5篇 点数1-5小班教案

小学三年级数学《除数是一位数的除法》教案3篇(三年级下册除数是一位的除法教案)