2023高中数学等差数列教案(必备6篇)

时间:2023-10-15 18:51:50 教案

2023高中数学等差数列教案 篇1

  等差数列的性质总结

(一)等差数列的公式及性质

  1.等差数列的定义: an?an?1?d(d为常数)(n?2);

  2.等差数列通项公式:

  an?a1?(n?1)d?dn?a1?d(n?N*),首项:a1,公差:d,末项:an

  推广: an?am?(n?m)d.从而d?

  3.等差中项

(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A?

(2)等差中项:数列?an?是等差数列?2an?an-1?an?1(n?2)?2an?1?an?an?

  24.等差数列的判定方法

(1)定义法:若an?an?1?d或an?1?an?d(常数n?N)? ?an?是等差数列.?an?am; n?ma?b或2A?a?b 2

(2)等差中项:数列?an?是等差数列?2an?an-1?an?1(n?2)?2an?1?an?an?2.

⑶数列?an?是等差数列?an?kn?b(其中k,b是常数)。

(4)数列?an?是等差数列?Sn?An2?Bn,(其中A、B是常数)。

  5.等差数列的证明方法

  定义法:若an?an?1?d或an?1?an?d(常数n?N)? ?an?是等差数列. ?

  6.提醒:

(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a

  1、d、n、an及Sn,其中a

  1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

①一般可设通项an?a1?(n?1)d

②奇数个数成等差,可设为?,a?2d,a?d,a,a?d,a?2d?(公差为d);

③偶数个数成等差,可设为?,a?3d,a?d,a?d,a?3d,?(注意;公差为2d)

  8..等差数列的性质:

(1)当公差d?0时,等差数列的通项公式an?a1?(n?1)d?dn?a1?d是关于n的一次函数,且斜率为公差d;

  前n和Sn?na1?n(n?1)ddd?n2?(a1?)n是关于n的二次函数且常数项为

  2(2)若公差d?0,则为递增等差数列,若公差d?0,则为递减等差数列,若公差d?0,则为常数列。

(3)当m?n?p?q时,则有am?an?ap?aq,特别地,当m?n?2p时,则有am?an?2ap.注:a1?an?a2?an?1?a3?an?2????,(4)若?an?、?bn?为等差数列,则??an?b?,??1an??2bn?都为等差数列

(5)数列{an}为等差数列,每隔k(k?N)项取出一项(am,am?k,am?2k,am?3k,???)仍为等差数列 *

(二).等差数列的前n项和公式: (1)Sn?n(a1?an)n(n?1)d1?na1?d?n2?(a1?d)n?An2?Bn 222

  2(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)

  特别地,当项数为奇数2n?1时,an?1是项数为2n+1的等差数列的中间项

  S2n?1??2n?1??a1?a2n?1??2?2n?1?an?1(项数为奇数的等差数列的各项和等于项数乘以中间项)

(2)若{an}是等差数列,则Sn,S2n?Sn,S3n?S2n,?也成等差数列

(3)设数列?an?是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和

  1.当项数为偶数2n时,S奇?a1?a3?a5?????a2n?1?n?a1?a2n?1??nan

  2n?a2?a2n?S偶?a2?a4?a6?????a2n??nan?1 2

  S偶?S奇?nan?1?nan?n?an?1?an?=nd

  S奇nana??n S偶nan?1an?

  12、当项数为奇数2n?1时,则

?S奇n?1?S2n?1?S奇?S偶?(2n?1)an+1??S奇?(n?1)an+1 ?????S奇?S偶?an+1S偶n???S偶?nan+1?

(其中an+1是项数为2n+1的等差数列的中间项).

(4)?an?、{bn}的前n和分别为An、Bn,且

  则

(5)等差数列{an}的前n项和Sm?n,前m项和Sn?m,则前m+n项和Sm?n???m?n?

(6)求Sn的最值

  法一:因等差数列前n项和是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性An?f(n),nan(2n?1)anA2n?1???f(2n?1).nn2n?1n?N*。

  法二:(1)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和

?an?0即当a1?0,d?0,由?可得Sn达到最大值时的n值. a?0?n?1

(2)“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。

  即 当a1?0,d?0,由?

  或求?an?中正负分界项 ?an?0可得Sn达到最小值时的n值. ?an?1?0

  法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,Sn取最大值(或最小值)。若S p = S q则其对称轴为n?

  注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于a1和d的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

  p?q 2

2023高中数学等差数列教案 篇2

  数列-数学教案

  教学目标

  1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数 的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

  2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

  3.通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯.

  教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 表示 的问题是重点问题,可先提出一个具体问题让学生分析 与 的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调 的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

  教学设计示例

  数列的概念

  教学目标

  1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.

  2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.

  3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.

  教学重点,难点

  教学重点是数列的定义的归纳与认识;教学难点是数列与函数的联系与区别.

  教学用具:电脑,/>课件(媒体资料),投影仪,幻灯片

  教学方法:讲授法为主

  教学过程

  一.揭示课题

  今天开始我们研究一个新课题.

  先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数

(板书)象这样排好队的数就是我们的研究对象——数列.

(板书)第三章 数列

(一)数列的概念

  二.讲解新课

  要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

(幻灯片)①

  自然数排成一列数:

  3个1排成一列:

  无数个1排成一列:

④的不足近似值,分别近似到 排列起来:

  正整数 的倒数排成一列数:

  函数 当 依次取 时得到一列数:

  函数 当 依次取 时得到一列数:

  请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.

(板书)1.数列的定义:按一定次序排成的一列数叫做数列.

  为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述八个数列为例,让学生练指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.

  由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,??,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.

(板书)2.数列与函数的关系

  数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集 的有限子集 .

  于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.

  遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.

(板书)3.数列的表示法

  数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,??,用 表示第 项,依次写出成为

(板书)(1)列举法

.(如幻灯片上的例子)简记为 .

  一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.

(板书)(2)图示法

  启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.

  有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.

(板书)(3)通项公式法

  如数列 的通项公式为 ;的通项公式为 ;的通项公式为 ;

  数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.

2023高中数学等差数列教案 篇3

  本节课是《普通高中课程标准实验教科书·数学5》(北师大版)第一章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.

  1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

①等差数列的概念;②等差数列的通项公式

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

  1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2.学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

  一:创设情境,引入新课

  1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18,自然放水每天水位降低2.5,最低降至5.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:)组成一个什么数列?

  3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:,.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③,.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三:举一反三,巩固定义

  1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

  四:利用定义,导出通项

  1.已知等差数列:8,5,2,…,求第200项?

  2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五:应用通项,解决问题

  1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

  2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差数列 3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六:反馈练习:教材13页练习1

  七:归纳总结:

  1.一个定义:

  等差数列的定义及定义表达式

  2.一个公式:

  等差数列的通项公式

  3.二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

2023高中数学等差数列教案 篇4

教学目标:

(1)理解等差数列的概念,掌握等差数列的通项公式;

(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

教学重、难点:等差数列的定义及等差数列的通项公式。

知识结构:一般数列定义通项公式法

  递推公式法

  等差数列表示法应用

  图示法

  性质列举法

教学过程:

(一)创设情境:

  1.观察下列数列:

  1,2,3,4,……;(军训时某排同学报数)①

,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

  2,2,2,2,……;(坐38路公交车的车费)③

  问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

  规律:从第2项起,每一项与前一项的差都等于同一常数。

  引出等差数列。

(二)新课讲解:

  1.等差数列定义:

  一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

  问题:

(a)能否用数学符号语言描述等差数列的定义?

  用递推公式表示为或.

(b)例1:观察下列数列是否是等差数列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

  意在强调定义中“同一个常数”

(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d<0时,数列有什么特点(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影响)

  说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

  例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

  放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然后引出求一般等差数列的通项公式。

  2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

(1)由递推公式利用用不完全归纳法得出

  由等差数列的定义:,……

∴,……

  所以,该等差数列的通项公式:.

(验证n=1时成立)。

  这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。

(2)累加法求等差数列的通项公式

  让学生体验推导过程。(验证n=1时成立)

  3.例题及练习:

  应用等差数列的通项公式

  追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

(2)此数列中有多少项属于区间[-100,0]?

  法一:求出a1,d,借助等差数列的通项公式求a20。

  法二:求出d,a20=a5+15d=a12+8d

  在例4基础上,启发学生猜想证明

  练习:

  梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

  观察图像特征。

  思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

  课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。

2023高中数学等差数列教案 篇5

[教学目标]

  1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

  2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

  3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

  1、教学重点:等差数列的概念的理解,通项公式的推导及应用。

  2、教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

  一。课题引入

  创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

  二、新课探究

(一)等差数列的定义

  1、等差数列的定义

  如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

(二)等差数列的通项公式

  探究1:等差数列的通项公式(求法一)

  如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?

  根据等差数列的定义可得:

  因此等差数列的通项公式就是:,

  探究2:等差数列的通项公式(求法二)

  根据等差数列的定义可得:

  将以上-1个式子相加得等差数列的通项公式就是:,

  三、应用与探索

  例1、(1)求等差数列8,5,2,…,的第20项。

(2)等差数列-5,-9,-13,…,的第几项是–401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。

  例2、在等差数列中,已知=10,=31,求首项与公差d.

  解:由,得。

  在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

  巩固练习

  1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。

  2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

  四、小结

  1、等差数列的通项公式:

  公差;

  2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

  3、判断一个数列是否为等差数列只需看是否为常数即可;

  4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。

  五、作业:

  1、必做题:课本第40页习题第1,3,5题

  2、选做题:如何以最快的速度求:1+2+3+???+100=

.1等差数列学案

2023高中数学等差数列教案 篇6

教学准备

教学目标

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

  掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

  等比数列性质请同学们类比得出。

【方法规律】

  1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

  2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

  a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

  3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

  例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

  例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

  例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

2023高中数学等差数列教案(必备6篇)相关文章: