有关平行四边形教案模板3篇(关于平行四边形的教案)

时间:2023-11-03 16:37:00 教案

  下面是范文网小编分享的有关平行四边形教案模板3篇(关于平行四边形的教案),供大家赏析。

有关平行四边形教案模板3篇(关于平行四边形的教案)

有关平行四边形教案模板1

  教学目标

  知识技能目标

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四 边形的这两种判定方法,并学会简单运用.

  过程与方法目标

  1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

  2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感态度价值观目标

  通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学重点:

  平行四边形判定方法的探究、运用.

  教学难点:

  对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

  教学过程

  第一环节 复习引入:

  ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

  问题1(多媒体展 示问题)

  1.平行四边形的定义是什么?它有什么作用?

  2.平 行四边形还有哪些性质?

  问题2

  有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

  第二环节 探索活动(12分钟,学生动手探究,小组合作)

  活动1:

  工具:两根长度相等的笔,

  两条平行线(可利用横格线).

  动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  思考1.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

  活动2

  工具:两根不同长度的.细纸条.

  动手:能否用这两根细纸条在平面上

  摆出平行四边形?

  思考2.1:你能说明你们摆出的四边形是平行四边形吗?

  思考2.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形的性质:对角线互相平分的四边形是平行四边形

  第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

  随堂练习:

  1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

  (1)OA与OC,OB与OD相等吗?

  (2)四边形BFDE是平行四边形吗?

  (3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

  2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

  (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

  学生想到的画法有:

  (1)分别过A,C作BC,BA的平行线,两平行线相交于D;

  (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

  (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

  第四环节 小结:(4分钟,学生回答问题)

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

  第五环节 布置 作业:

  B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

  A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

  ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

有关平行四边形教案模板2

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

  平行四边形及其性质

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的`创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

有关平行四边形教案模板3

  教学目标:

  1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

  2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

  3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

  教学重点:认识平行四边形。

  教学难点:感悟平行四边形的特征。

  教学过程:

  一、情境导入

  同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

  二、自主探究

  同学们在生活中见过这样的'图形吗?在哪见过?

  看,这是教师在生活中见到的四边形,你知道这是什么吗?

  课件出示:教材第14页例2图

  第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。

  你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

  学生动手操作,尝试拼平行四边形,教师巡视指导。

  组织交流,展示学生拼图结果,并让学生说说发现了什么?

  (它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)

  老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

  三、巩固练习

  1.“想想做做”第1题。学生独立完成,分小组讨论, 汇报。

  2.“想想做做”第2题。组织学生想一想,再围一围。

  3.“想想做做”第3题,学生在书上描一描,教师巡视检查。

  4.“想想做做”第4题,学生动手完成。

  5. “想想做做”第5题,学生在家长的帮助下完成。

  三、全课总结

  提问:今天这节课你有什么收获?

  课后反思: 文 章

有关平行四边形教案模板3篇(关于平行四边形的教案)相关文章:

关于平行四边形教案6篇(《平行四边形》教案)

平行四边形的面积教案9篇

平行四边形教案5篇 平行四边形特点教案

实用的平行四边形教案范文5篇(平行四边形的教学教案)

有关平行四边形教案模板6篇 平行四边行的教案

关于平行四边形教案5篇(平行四边形教学主题)

平行四边形教案范文6篇(18.1平行四边形教案)

《平行四边形的面积》教学反思9篇(平行四边形面积 教学反思)

平行四边形面积教案10篇 平行四边形的面积公开课优秀教案

关于平行四边形教案范文4篇 《平行四边形》教案